

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council

6.25, Environmental Statement, Volume 4, Appendix 10.2, Annexes B to J

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

Document Index

Annex B- Supporting Information

Annex C- Exploratory Hole Plans

Annex D- Exploratory Hole Logs

Annex E- Laboratory Certificates

Annex F- WM3 and WAC Results

Annex G- Chemical Assessment Criteria

Annex H- Gas Monitoring Results

Annex I- Track Ballast Testing Result

Annex J- Risk Assessment Methodology

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council
6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex B1
Ashton Vale Road Alternative Highway Access Preliminary Sources Study

Report

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

Ashton Vale Road Alternative Highway Access, Preliminary Sources Study Report

Prepared for

North Somerset Council

July 2017

Burderop Park Swindon SN4 0QD

Document History

Reference Number:

Client Name: North Somerset Council

This document has been issued and amended as follows:

Version	Date	Description	Created By	Verified By	Approved By
Draft	06/02/2017		Oliver Rose / Peter Wilkinson	Peter Wilkinson	Mike Floyd
Final	14/07/2017		Oliver Rose / Peter Wilkinson	Peter Wilkinson	Mike Floyd

In preparing this report, CH2M relied, in whole or in part, on data and information provided by the Client and third parties, which information has not been independently verified by CH2M and which CH2M has assumed to be accurate, complete, reliable, and current. Therefore, while CH2M has utilised reasonable due kill and care in preparing this Report, CH2M does not warrant or guarantee the conclusions set forth in this Report which are dependent or based upon data, information, or statements supplied by third parties or the client.

This Report is intended for Client's sole and exclusive use and is not for the benefit of any third party and may not be distributed to, disclosed in any form to, used by, or relied upon by, any third party without prior written consent of CH2M, which consent may be withheld in its sole discretion.

Use of this Report or any information contained herein, if by any party other than Client, shall be at the sole risk of such party and shall constitute a release and agreement by such party to defend and indemnify CH2M and its affiliates, officers, employees and subcontractors from and against any liability for direct, indirect, incidental, consequential or special loss or damage or other liability of any nature arising from its use of the Report or reliance upon any of its content. To the maximum extent permitted by law, such release from and indemnification against liability shall apply in contract, tort (including negligence), strict liability, or any other theory of liability.

Contents

Secti	on		Page
1	Execu	utive Summary	1
2	Intro	oduction and Objectives	1
	2.1	Route Options	2
		2.1.1 Route Option B. Through Manheim Car Auction Site	2
		2.1.2 Route Option C. Directly from A370 from the North	3
3	Sourc	ces of Information	4
	3.1	Previous Site-Specific Ground Investigation	4
	3.2	Adjacent Ground Investigation	4
	3.3	Other Sources	4
	3.4	Site Walkover	4
4	Site [Description	6
	4.1	Topography and Geomorphology	6
		4.1.1 Route Option B Topography	
		4.1.2 Route Option C Topography	
	4.2	Man-Made Features	
		4.2.1 Route Option B	
		4.2.2 Route Option C	
	4.3	Hydrology	
	4.4	Site History	
	4.5	Regional Geology	
		4.5.1 Superficial Deposits	
		4.5.2 Bedrock	
	4.6	Hydrogeology	
5	Antic	cipated Ground Conditions	14
•	5.1	Topsoil	
	5.2	Made Ground and Fill	
	5.3	Landfill Material	
	5.4	Alluvium	
	5.5	Mercia Mudstone	
	5.6	Coal Measures	
	5.7	Conceptual Ground Models	
	5.7	5.7.1 Route Option B	
		5.7.2 Route Option C	
6	Histo	oric Coal Mining	20
U	6.1	Dip, Location and Thickness of Seams	
	0.1	6.1.1 Route Option B	
		6.1.2 Route Option C	
	6.2	Mine Entries	
	6.3	Summary	
7	Cont	amination Risk Assessment	25
•	7.1	Introduction	
	7.1	Sources, Pathways and Receptors	
	7.2	Implications to Scheme	
8	טאט	<u>'</u>	
9		osed Development	
J	Prob(105EU DEVEIODMENL	

SECTION 1 – EXECUTIVE SUMMARY

	9.1	Route Option B	30
	9.2	Route Option C	
10	Geote	echnical Risks	31
11	Recor	mmendations	33
	11.1	Further Studies	33
	11.2	Outline Scope for Ground Investigation	34
12	Concl	usions	35
13	Refer	ences	36

Appendices

Α	Route	Options

- B Site Walkover, Photos and Plan
- C Previous Exploratory Hole Location Plan
- D Previous Exploratory Hole Logs
- E Recommendations for Ground Investigation
- F CH2M (2016) Technical Note
- G Coal Authority Shaft Plan and Data Sheet
- H Envirocheck historical maps

1 Executive Summary

The MetroWest Scheme proposes the closure of the Ashton Gate level crossing on the Portishead rail line, located off the A3029 Winterstoke Road in southwest Bristol. This would require the construction of an alternative access road to connect the Ashton Gate Trading Estate to surrounding highways.

Two alternative access options have been proposed. Option B crosses a small brook (Longmoor Brook), and traverses along the edge of an historic landfill, entering the trading estate from the south-west. Option C proposes modifications to the existing A370, and construction of a new link road, entering the trading estate from the north-west.

This report has been prepared to address the following aspects of the proposed alternative access options:

- Collation and summary of relevant site data and ground investigation information undertaken in the vicinity, and geotechnical observations from a site walkover survey
- Development of a ground model and assessment of likely geotechnical, hydrogeological and geoenvironmental risks
- Recommendations for further ground investigation.

No scheme specific ground investigation has been completed at this stage, although substantial information is available from ground investigation for the AVTM metrobus scheme in the area of part of Option B.

Option B is located over thick alluvial and landfill material and so there is potential for large amounts of settlement. Limited superficial deposits are expected beneath Option C.

Option C crosses a steep (~45-56°) slope, created by an old clay pit excavated between 1917 and 1932. The condition of the slope is considered 'unproven', and further detailed investigation and inspection of the condition of the slope is recommended.

Coal mining activity is extensive in the area. Route Option B is located close to a known historic mine shaft (Ashton Vale Old Pit), however, from assessing all available information it is not expected to interfere with the planned route, although there is significant risk for unknown mine entries and shafts to be present which could affect the planned development.

Worked coal veins are likely to be present beneath both route options. There is potential for collapse up to approximately 10-20mBGL, thus significantly affecting the performance of piles.

The majority of risks relating to land contamination can be mitigated as part of scheme design or Health and Safety plan. The scheme design will need to address risks to the water environment, such as a piling risk assessment. The key implication to the scheme is cost associated with disposal of ground contamination, from the landfill areas. There are few options to treat or re-use this material, and disposal costs are likely to be approximately £250/m³.

Outline recommendations for ground investigation scope are included in this report.

2 Introduction and Objectives

The MetroWest Scheme proposes the closure of the Ashton Gate level crossing on the Portishead rail line, located off the A3029 Winterstoke Road in southwest Bristol (refer to Figure 2-1). This would require the construction of an alternative access road to connect the Ashton Gate Trading Estate to surrounding highways.

Alternative access options to the Ashton Gate Trading Estate are being considered under the project title: Ashton Vale, Alternative Highway Access.

The Objective of this report is to review existing information on the ground conditions and document ground risk associated with the proposed Route Options. Two Route Options are being considered Route Option B and Route Option C. A summary of these Options is presented in Section 2.1 and drawings are presented in Appendix A.

Route Option B passes through the Manheim Car Auction site. Ground risk associated with this option has been studied previously, refer to (Appendix F):

CH2M (2016). MetroWest Ashton Gate level crossing closure – high level review of geotechnical and geo-environmental issues for proposed alternative access route.

CH2M (2016) recommended the following tasks with respect to further research and definition of ground risk with respect to Route Option B (Through the Manheim Car Auction site):

- 1. A more detailed desk study to include:
 - a. Attempting to obtaining information on the mine shaft in the area of the ETS waste transfer station and on the possible presence of shallow mine workings;
 - b. Attempting to obtain previous ground investigation data from the BCFC stadium investigations;
 - c. Assessment of the coal sub-crop geometry to assess the risk of the presence of shallow mine workings;
- 2. Undertake a Contamination Risk Assessment for the site, including review of landfill ground investigation data;
- 3. Undertake a detailed UXO risk assessment for the site.

This report addresses Point 1a, 1b, 1c and Point 2 above with respect to Route Option B and C. Note that CH2M (2016) did not consider Route Option C, which was included subsequent to the issue of CH2M (2016). Therefore, this Technical Memo extends the study area in order to inform and report upon the ground risk for Route Option C.

Point 3 above (a UXO detailed risk assessment) is a prerequisite for ground works (including ground investigation). Ground investigation will be necessary and it is assumed that this will only proceed once a decision on the preferred Route Option is made. Therefore, Point 3 is not undertaken herein, it is recommended that this is undertaken once a decision on the preferred Route Option is made.

2.1 Route Options

Figure 2-1 shows the approximate location of the two proposed routes. Detailed plans of the two proposed route options are provided in Appendix A.

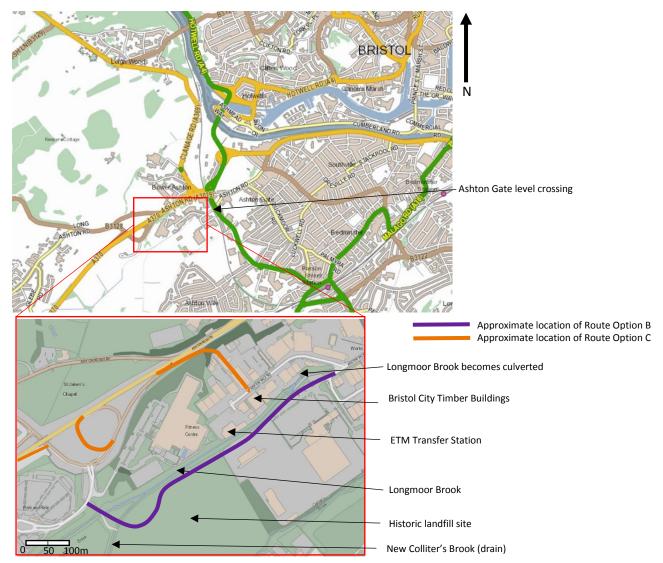


Figure 2-1: Site location map (Know your place). Approximate route options are indicated, the detailed route plans are provided in Appendix A.

2.1.1 Route Option B. Through Manheim Car Auction Site.

This is shown on the drawing in Appendix A. In summary, the scheme comprises a new access road approximately 650m long, from west to east.

- In the west, the new access road starts at the junction of the Long Ashton Park and Ride road and David Lloyd sports centre access road;
- The road heads southeast over Longmoor Brook and New Colliter's Brook immediately upstream of their confluence;
- The road continues parallel to Longmoor Brook on the south side of the brook and along the northern edge of the historic landfill site before entering the Manheim Car Auctions site in the northwest corner;
- The road continues parallel with Longmoor Brook, before joining Ashton Vale Road.

Details of the proposed development for Route Option B is provided by Section 9.

2.1.2 Route Option C. Directly from A370 from the North.

This is shown on the drawing in Appendix A. In summary, the scheme comprises from west to east:

- On the A370, a new southbound single lane with hard shoulder on-slip road;
- The existing path that runs parallel to the existing A370 off-slip is to be widened to 3m and converted to a shared foot/cycle path;
- The existing A370 off-slip is to be retained and converted into a new highway link road into the industrial estate;
- A new southbound off-slip is to be constructed;
- A new link road will provide an entrance to the industrial estate to join Ashton Vale Road from the north. North of the David Lloyd's Sports Centre the road will be in cut (1.5m) before spanning the existing slip road slope, where an elevated highway or embankment with retaining wall will be required;
- Associated amendment/improvements to existing junctions will also take place.

Details of the proposed development for Route Option C is provided by Section 9.

3 Sources of Information

3.1 Previous Site-Specific Ground Investigation

This desk study is primarily based upon previous geotechnical information obtained by CH2M for the Ashton Vale to Temple Meads (AVTM) Metrobus scheme, between 2010 and 2013 for the West of England Partnership / Bristol City council:

- Halcrow- Ashton Vale to Temple Meads and Bristol City Centre, geotechnical Desk Study 2012;
- Structural Soils- Ashton Vale to Temple Meads and Bristol City Centre, Ground Investigation 2013;
- RPS Explosives Engineering Services- Ashton Vale to Temple Meads, Detailed Desk Study for Potential Historic Unexploded Ordnance Contamination 2012;
- Halcrow- Bristol Rapid Transit Route Corridor & City Centre sections, Phase I Preliminary Risk Assessment 2010.

3.2 Adjacent Ground Investigation

The AVTM desk study made reference to some earlier reports prepared for the development of a new football stadium at the landfill site to the south of Route Option B:

- Ove Arup and Partners International Limited- Land at Ashton Vale Geo-Environmental Report 2002;
- URS- Bristol City Football Club Site Investigation, Geo-Environment Interpretative Report 2009;
- WSP- Bristol City Football Club Site Investigation, Environment Statement 2009.

3.3 Other Sources

A number of other sources of information have also been used:

- Ordnance Survey maps [map number: 154];
- British Geological Survey, 2016. Online borehole database
 http://mapapps.bgs.ac.uk/geologyofbritain/home.html [accessed January 2017];
- British Geological Survey, 1993. Geology of the Bristol District. Memoir for 1:63360 geological special sheet (England and Wales). Geological Survey of England and Wales;
- British Geological Survey (2004). Solid and Drift, 1:50000, sheet number: 264;
- Geological Survey of England and Wales, 1:10000, sheet number: ST57SE (1995)
- Historic maps from Bristol City Council 'Know Your Place' online application https://maps.bristol.gov.uk/knowyourplace/ [accessed January 2017];
- Environment Agency 'What's in your backyard?' website <u>www.environment-agency.gov.uk/</u> [accessed January 2017];
- Google earth satellite and Streetview imagery www.google.com\earth [accessed January 2017];
- Coal Authority Shaft Plan and Data Sheets (2016);
- AVTM Coal Authority Report (2012).

3.4 Site Walkover

A site walkover was undertaken in January 2017. The site plan and photos are included in Appendix B.

The main observations relevant to Option B:

- Soft ground present south of Longmoor Brook (photos 3920-3922).
- Gently sloping banks of Longmoor Brook (approximately 0.5m high) and in parts, densely vegetated (photo 3918 and 3925).
- Black plastic liner visible in places on the southern bank of Longmoor Brook (photos 3926, 3932 and 3933).

The main observations relevant to Option C:

- Steep, likely cut, vegetated slope present north of David Lloyd's sports centre, with an approximately 4m high gabion wall located at the base. The gabion wall appeared in relatively good condition (see photos 3968-3973).
- Steep, uneven and vegetated ground, either side of a ditch located north of the park and ride (photos 3959-3963).

4 Site Description

4.1 Topography and Geomorphology

The site is located on the western edge of the city of Bristol in Ashton Vale (see Figure 2.1). The site is in the wide, level base of the SW-NE orientated valley of Ashton Vale with drainage running northeastwards. Natural drainage is poor, with soft, boggy ground found where the land is low-lying and where it has not been artificially raised or drained.

The land rises north of the brooks, with clay pits cut into the valley side north of the trading estates, steepening the valley slope. The land is less boggy, with a school and playing field located north of the A370. The A370 is a primary road running between Weston-super-Mare and Bristol. The by-pass at Long Ashton was constructed in the 1970s, and the land has been raised as part of the earthworks associated with the construction.

The valley to the southwest of the Manheim Car Auction is used for grazing or is untended wetland.

A topography survey was undertaken in February 2017.

4.1.1 Route Option B Topography

The Long Ashton Park and Ride and David Lloyd Entrance Road is at ~11mAOD. Longmoor Brook and New Colliter's Brook (where Route Option B crosses in the west) are at ~5mAOD, the land between the confluence of the brooks is ~7mAOD. The landfill is elevated in its centre (~11mAOD) and slopes towards the watercourses of Longmoor Brook to the north (~5mAOD), New Colliter's Brook to the west and Colliter's Brook to the south. Route Option B will traverse along the northern edge of the landfill at approximately 9mAOD before entering Manheim Car Auctions Site and joining Ashton Vale Road at ~9mAOD.

4.1.2 Route Option C Topography

The A370 varies in height from ~19mAOD in the west, north of the Park and Ride, to ~21mAOD north-east of David Lloyd's Sports Centre. The A370 is 20.4mAOD at the point where it is intended that the new link road for Option C starts to enter the industrial estate. This part of the route is proposed to be in cut (~1.5m), reducing the elevation difference between the link road and Ashton Vale Road below. The elevation difference is approximately 12m over a best estimate of between 8 and 12m, suggesting a slope angle of between 45° and 56° (see plate reference 3983-3985). An approximately 4m high gabion wall is located just north-east of the David Lloyd's sports centre.

In the west, where a new southbound single lane with hard shoulder on-slip road is to be constructed, there are dense brambles either side of a ditch at $^{\circ}9.7$ mAOD. The ground slopes up from the ditch to the A370 to the north at $^{\circ}19$ mAOD (over approximately 13m, giving a slope angle of $^{\circ}38^{\circ}$).

4.2 Man-Made Features

This desk study has attempted to identify the man-made features relevant to the two proposed routes, using the site walkover, maps and Google Earth. A full inventory and survey of existing highways, utilities and assets should be established, prior to construction. This will assist in evaluating risk assessment (to existing highways, utilities and assets).

4.2.1 Route Option B

The main features associated with Route Option B are;

- Long Ashton Park and Ride;
- AVTM (Currently under construction);
- Landfill;

- The Manheim Car Auction Site (generally level and appears to be on a slightly raised platform and mostly paved with asphalt);
- Ashton Gate and Cala trading estates including highways, services and infrastructure;
- Longmoor Brook and culvert.

4.2.2 Route Option C

The main features associated with Route Option C are;

- Long Ashton Park and Ride;
- David Lloyd's Sports Centre with associated car park on the slopes on the north side of Longmoor Brook;
- A370 and associated junctions with the B3128 (including overbridge) east of the Park and Ride;
- Ex quarry (Old Clay Pit north of trading estates);
- Ashton Gate and Cala trading estates including highways, services and infrastructure.

4.3 Hydrology

Longmoor Brook is channelised and raised slightly above the valley bottom. Large concrete structures are present on the north side of the auction site just before the brook goes into culverts running northeastwards beneath Ashton Gate and towards the tidal River Avon New Cut.

Figure 4-1: Photo of Longmoor Brook from footbridge. Looking northeast at Bristol City FC Stadium. Low shrubs and grass with occasional trees are visible on the gently sloping slopes.

During normal flow, Longmoor Brook is approximately 0.5m deep, with gentle slopes covered by low vegetation (see Figure 4.1). New Colliter's Brook joins Longmoor Brook south of the Long Ashton Park and Ride.

Historical maps indicate that Ashton Brook flowed from east to west between Longmoor Brook and Ashton Road to the north. Following the construction of the trading estates Ashton Brook becomes culverted, and then David Lloyds Sports Centre was constructed between 1994-1998 where Ashton Brook used to be located. Route Option C will cross the old alignment of Ashton Brook which may have been culverted.

Figure 4-2: Showing the main river lines within the site and the potential flood zones (Environment Agency, What's in your backyard?).

Figure 4.2 shows the flood zones within the area. The western end of the proposed route is located within a Flood Zone 3; the rest of the route is not within any flood zone. Compensatory flood storage may be required, if Route Option B is the preferred option.

4.4 Site History

The area has a long history of development which is summarized in Table 4.1. This is primarily based on an Envirocheck Report (2012), obtained for the AVTM desk study and information from the Environment Agency website 'What's in your backyard?' [accessed January 2017].

The types of waste buried within the landfills include:

- Inert- "Waste which remains largely unaltered once buried such as glass, concrete, bricks, tiles, soil and stones." (EA What's in your backyard?)
- Industrial- "Waste from a factory or industrial process. It excludes waste from mines, quarries and agricultural wastes." (EA What's in your backyard?)
- Commercial- "Waste from premises used wholly or mainly for trade, business, sport, recreation or entertainment. Excludes household and industrial waste." (EA What's in your backyard?)
- Special- "Waste that has hazardous properties and is defined in the Special Waste Regulations 1996. Such properties may be flammable, irritant, toxic, harmful, carcinogenic or corrosive." (EA What's in your backyard?)
- Household- "Waste from dwellings of various types including houses, caravans, houseboats, campsites, prisons and wastes from schools, colleges and universities." (EA What's in your backyard?)

The EA provide outline information on the Landfill sites at Ashton Vale and Parsonage Farm (Figure 4.3):

- Phase 3 Landfill Site at Ashton Vale first received waste in 1985 and last received waste in 1991
 - Inert
 - Industrial
 - Commercial
- Phase 2 of Landfill Site at Parsonage Farm first received waste in 1983 and last received waste in
 - Inert
 - Industrial

- Commercial
- Land at Parsonage Farm and Phase 2 first received waste in 1981 and last received waste in 1988
 - Inert
 - Industrial
 - Commercial
 - Special
- Viridor Long Ashton first received waste in 1992, and no information is provided as to when it last received waste
 - Inert
 - Industrial
 - Commercial
 - Household

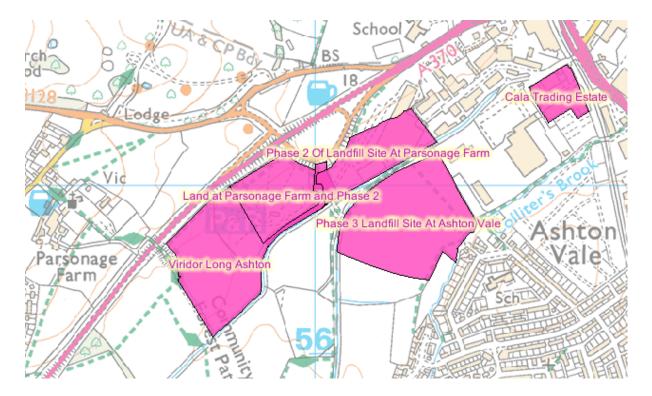


Figure 4-3: Landfill sites within the area (Environment Agency What's in your backyard?) (accessed January 2017)

Table 4-1: Summary of site history, tick indicates relevance of development details to each route. Envirocheck (2012) historical maps are provided in Appendix H.

Northern part of site north of Longmoor Brook is off the map	Date	Development Details	Route Option B	Route Option C
approximate current location. Predominantly agricultural land with field boundaries. 3 houses to east in current trading estate area Coal pits shown to south and east. Ashton Vale Works (shown variously as Iron Works, Brick and Coke) on north side of Longmoor Brook including clay pits to north and west, coke ovens and factory buildings in centre, colliery to east, railway lines in centre and east, and possible spoil heap to south along northern bank of Longmoor Brook. Kennel farm shown approximately where current B3128 goes underneath the A370 Ashton Brook flowing west to east, north of Longmoor Brook Frayne's Colliery (disused) shown on south side of Ashton brook in current trading estate area Housing to north east and Kennel Farm to north Air shaft and buildings labelled where Ashton Vale Old Pit is believed to be. Jeages spoil heap alongside Longmoor Brook and larger clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused Allotment gardens around former Frayne's colliery Buildings and air shaft associated with Ashton Vale Old Pit no longer present Ashton Vale works now described as brick and tile works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Filling in SE corner of Ashton Fields landfill Filling in SE corner of Ashton Fields landfill				
1886- 1894	Мар)	approximate current location. Predominantly agricultural land with field boundaries. 3 houses to east in current	✓	
and Coke) on north side of Longmoor Brook including clay pits to north and west, coke overs and factory buildings in centre, colliery to east, railway lines in centre and east, and possible spoil heap to south along northern bank of Longmoor Brook. • Kennel farm shown approximately where current B3128 goes underneath the A370 • Ashton Road north of Kennel Farm • Ashton Brook flowing west to east, north of Longmoor Brook • Frayne's Colliery (disused) shown on south side of Ashton brook in current trading estate area • Housing to north east and Kennel Farm to north • Air shaft and buildings labelled where Ashton Vale Old Pit is believed to be. 1900 - Larger spoil heap alongside Longmoor Brook and larger clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused • Allotment gardens around former Frayne's colliery • Buildings and air shaft associated with Ashton Vale Old Pit no longer present • Ashton Vale works now described as brick and tile works with kilns shown • Large clay pit between Ashton Brook and Ashton Road north of the current trading estates • Allotments are now Saw Mills • Sign of raised filling in SE corner of landfill site • Marshy ground shown around Longmoor Brook • Bristol Water Works supply, highlighted to the north of Longmoor Brook • Possible labour or military camp occupying site of current car auctions site Photo • Filling in SE corner of Ashton Fields landfill		Coal pits shown to south and east.	✓	✓
goes underneath the A370 Ashton Road north of Kennel Farm Ashton Brook flowing west to east, north of Longmoor Brook Frayne's Colliery (disused) shown on south side of Ashton brook in current trading estate area Housing to north east and Kennel Farm to north Air shaft and buildings labelled where Ashton Vale Old Pit is believed to be. Larger spoil heap alongside Longmoor Brook and larger clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused Allotment gardens around former Frayne's colliery Buildings and air shaft associated with Ashton Vale Old Pit no longer present Ashton Vale works now described as brick and tile works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill	1894 (1 st Edtn	and Coke) on north side of Longmoor Brook including clay pits to north and west, coke ovens and factory buildings in centre, colliery to east, railway lines in centre and east, and possible spoil heap to south along northern bank of	✓	~
Ashton Brook flowing west to east, north of Longmoor Brook Frayne's Colliery (disused) shown on south side of Ashton brook in current trading estate area Housing to north east and Kennel Farm to north Air shaft and buildings labelled where Ashton Vale Old Pit is believed to be. 1900 - Larger spoil heap alongside Longmoor Brook and larger clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused Allotment gardens around former Frayne's colliery Buildings and air shaft associated with Ashton Vale Old Pit no longer present Ashton Vale works now described as brick and tile works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Photo Filling in SE corner of Ashton Fields landfill				✓
Brook Frayne's Colliery (disused) shown on south side of Ashton brook in current trading estate area Housing to north east and Kennel Farm to north Air shaft and buildings labelled where Ashton Vale Old Pit is believed to be. Jerry Clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused Allotment gardens around former Frayne's colliery Buildings and air shaft associated with Ashton Vale Old Pit no longer present Jerry Clay pit to works now described as brick and tile works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Filling in SE corner of Ashton Fields landfill Filling in SE corner of Ashton Fields landfill		Ashton Road north of Kennel Farm		✓
brook in current trading estate area Housing to north east and Kennel Farm to north Air shaft and buildings labelled where Ashton Vale Old Pit is believed to be. 1900 - Larger spoil heap alongside Longmoor Brook and larger clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused Allotment gardens around former Frayne's colliery Buildings and air shaft associated with Ashton Vale Old Pit no longer present Ashton Vale works now described as brick and tile works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill				✓
Air shaft and buildings labelled where Ashton Vale Old Pit is believed to be. 1900 - Larger spoil heap alongside Longmoor Brook and larger clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused Allotment gardens around former Frayne's colliery Buildings and air shaft associated with Ashton Vale Old Pit no longer present 1930 - Ashton Vale works now described as brick and tile works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook 1946 Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill			✓	✓
is believed to be. 1900 - 1918		Housing to north east and Kennel Farm to north		✓
clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused • Allotment gardens around former Frayne's colliery • Buildings and air shaft associated with Ashton Vale Old Pit no longer present 1930 - Ashton Vale works now described as brick and tile works with kilns shown • Large clay pit between Ashton Brook and Ashton Road north of the current trading estates • Allotments are now Saw Mills • Sign of raised filling in SE corner of landfill site • Marshy ground shown around Longmoor Brook • Bristol Water Works supply, highlighted to the north of Longmoor Brook 1946 • Possible labour or military camp occupying site of current car auctions site Photo • Filling in SE corner of Ashton Fields landfill		~	✓	
Buildings and air shaft associated with Ashton Vale Old Pit no longer present Ashton Vale works now described as brick and tile works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill		clay pit to north Colliery on north side now labelled "Old	✓	
no longer present 1930 - Ashton Vale works now described as brick and tile works with kilns shown • Large clay pit between Ashton Brook and Ashton Road north of the current trading estates • Allotments are now Saw Mills • Sign of raised filling in SE corner of landfill site • Marshy ground shown around Longmoor Brook • Bristol Water Works supply, highlighted to the north of Longmoor Brook 1946 • Possible labour or military camp occupying site of current car auctions site Photo • Filling in SE corner of Ashton Fields landfill		 Allotment gardens around former Frayne's colliery 	✓	✓
 Ashton Vale works how described as brick and the works with kilns shown Large clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill 			✓	
 Large Clay pit between Ashton Brook and Ashton Road north of the current trading estates Allotments are now Saw Mills Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill 			✓	✓
 Sign of raised filling in SE corner of landfill site Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill 				✓
 Marshy ground shown around Longmoor Brook Bristol Water Works supply, highlighted to the north of Longmoor Brook Possible labour or military camp occupying site of current car auctions site Filling in SE corner of Ashton Fields landfill 		Allotments are now Saw Mills	✓	✓
 Bristol Water Works supply, highlighted to the north of Longmoor Brook 1946 Possible labour or military camp occupying site of current car auctions site Photo Filling in SE corner of Ashton Fields landfill 		Sign of raised filling in SE corner of landfill site	✓	
Longmoor Brook 1946 Possible labour or military camp occupying site of current car auctions site Photo Filling in SE corner of Ashton Fields landfill		Marshy ground shown around Longmoor Brook	✓	
Air car auctions site Photo Filling in SE corner of Ashton Fields landfill			✓	✓
Filling in SE corner of Ashton Fields (and fill)			✓	
Coke and brickworks appear to be disused and overgrown	Photo	Filling in SE corner of Ashton Fields landfill	✓	
		Coke and brickworks appear to be disused and overgrown	✓	✓

Date	Development Details	Route Option B	Route Option C
1948-	Tanks labelled at sides of some buildings in labour camp	✓	✓
54	 Saw Mills expanded and timber yards and joinery works make up eastern half of current trading estate 	✓	✓
	 Clay pit between Ashton Brook and Ashton Road now labelled as Old Clay Pit 		✓
	 Warehouse labelled as Ministry of Works present on current southern half of Manheim Car Auction site. Raised land indicated on edge of brook for development platform 	✓	
	 Pond near the confluence of Longmoor Brook and New Colliter's Brook 	✓	
1963	 Construction of Ashton Vale Road and trading estate with separate units, depots and builders yard shown on north side of Longmoor Brook. Raised land indicated around edge of trading estate for development platform 	✓	~
	Ashton Brook culverted		✓
	 Ashton park Secondary school (with tennis courts and playing field) and houses constructed north of Ashton Road 		✓
	 Large depot constructed at Manheim Car Auctions plot replacing previous camp, labelled "National Assistance Board Offices" (HM Stationary Office in 1974) and vehicle testing centre in NW corner (1974) 	✓	
1969- 1970	 A370 Brunel Way reprofiled to north with new junctions. Kennel Farm demolished. 		✓
	Depot shown at current ETM site, with tanks	✓	
1987-	• ETM site new buildings (1983)	✓	
1989	 Longmoor brook has been channelised with straight channel and regular side slopes and culvert construction. New Colliter's Brook constructed 	✓	
	Appears to be a footbridge crossing Longmoor Brook	✓	
	Ashton Brook no longer visible		✓
1994- 1996	 Park and Ride developed in phases commencing after 1991 and before 1999. 	✓	✓
	Fitness centre constructed over where Ashton Brook was located	✓	✓
1999-	Manheim car auctions visible in 1999	✓	
2016 (Google Earth Satellite Image)	Construction of AVTM	✓	

4.5 Regional Geology

A summary geological map from the AVTM Envirocheck Report (2012) is provided in Figure 4.4.

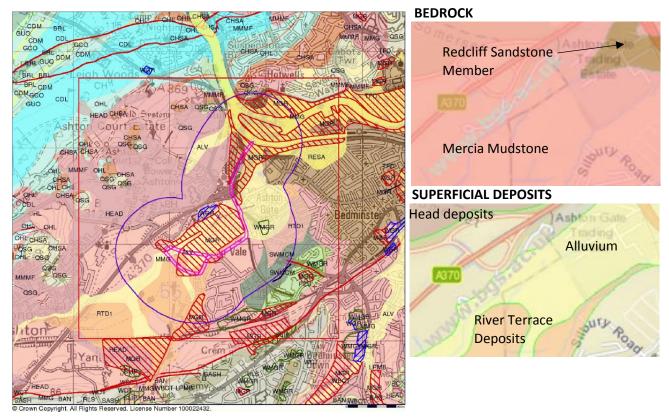


Figure 4-4: BGS Geological Map for site extracted from AVTM Envirocheck report (2012). Red hatched areas represent made ground such as landfills, earthworks and land raising.

4.5.1 Superficial Deposits

4.5.1.1 Route Option B

The Ashton Fields area typically comprises landfill (at the Long Ashton Park and Ride site and raised land south of Longmoor Brook at the 'Northern Fields' landfill site) or made ground of colliery spoil and iron works ash and clinker raised above existing floodplain (at the Ashton Vale Trading Estate), overlying soft alluvium, possibly with a desiccated crust and lenses of sand. Where there has been no artificial land raising, alluvium is located at surface in the valley bottom. The alluvium may overlie thin River Terrace Deposits (sand and gravel).

4.5.1.2 Route Option C

No superficial deposits are expected immediately south of the A370, although Head deposits consisting of sand, gravel or clay, formed from solifluction and soil creep outcrop north of the A370 (Figure 4.4).

4.5.2 Bedrock

Beneath any artificial or superficial deposits, Mercia Mudstone is present with occasional sandstone bands. The Mercia Mudstone Group has been differentiated between CIRIA C570 weathering Zones IVb and IVa, where the Mercia Mudstone generally resembles a stiff to very stiff CLAY, and Zones I to III, where the degree of weathering is less and the lithology is generally described as MUDSTONE interbedded with SILTSTONE or SANDSTONE beds (Table 4.2). The Mercia Mudstone unconformably overlies steeply dipping Coal Measures strata, with historic coal mining beneath both route options. Historically there were several coal mines in the area, and the former coal mine spoil and development platforms that raised the mines above the floodplain now form the site of the current trading estate and Manheim Car Auctions site (Route Option B).

To the east of both route options and underlying much of the Ashton Gate trading estate, the Redcliffe Sandstone Member of the Mercia Mudstone Group predominates.

Table 4-2: Mercia Mudstone weathering grades

Mercia Mudstone Group Weathering Grades (after CIRIA C570)

Weathering Zone	Generalised Geological Description
MMG Zone IVb and IVa	Stiff to very stiff reddish brown slightly sandy silty CLAY.
MMG Zone III to I	 Very stiff reddish brown silty/sandy CLAY. Extremely weak to weak thinly laminated to medium bedded reddish brown silty MUDSTONE.
	 Very weak to weak thinly to thickly laminated reddish brown clayey SILTSTONE. Very weak to medium strong thinly to medium bedded reddish brown fine grained SANDSTONE.

4.6 Hydrogeology

Low lying ground within the area has a high groundwater level with occasional artesian water pressures encountered. Ground investigation within the area of Route Option B show that groundwater strikes range from -1.5mAOD to 8.2mAOD, often confined rising to 4.5mAOD to 8.2mAOD.

The Envirocheck Report (2012) and the Environment Agency website 'What's in your backyard?' indicate that both route options are located on a Secondary B Bedrock aquifer, which is predominantly lower permeability layers which may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering.

The superficial deposits beneath Route Option B are a Secondary A superficial aquifer, which is a permeable layer capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers.

Both route options are not located in a source protection zone. Historically the Redcliffe Sandstone member has been an important aquifer for Bristol. It is classified as a Secondary A Bedrock aquifer.

5 Anticipated Ground Conditions

No site-specific ground investigation has been undertaken for this scheme. However, ground investigation has been undertaken for the purpose of the AVTM scheme, which includes the southwest part of the Route Option B layout and confirms that the geological sequence for the low-lying ground is as expected from BGS records (Section 4.5 above).

Ground investigation from AVTM, the proposed new football stadium and BGS archives has been used to create cross sections and tables of typical ground condition for both Route Options. The exploratory hole logs and location plan are provided in Appendix C and D respectively.

5.1 Topsoil

Topsoil is likely to be encountered to areas of landscaping and parts of the Route Options which are yet undeveloped.

Local to the landfill, approximately 200mm of grass and rootlets has been proven within reddish brown gravelly clayey soil.

5.2 Made Ground and Fill

Made ground and fill should be expected across areas subject to previous development. Landfill is discussed in Section 5.3 below, elsewhere it is present at the trading estates and is shown by Figure 4.4. The source of fill is likely to be associated with previous industrial activity including past mining activity within the area. Earthwork fill also forms the embankment to the A370.

5.3 Landfill Material

The EA website 'What's in your backyard?' indicates that the type of waste buried in the landfills within the area is mainly inert, industrial and commercial with special and household waste buried at Land at Parsonage Farm and Viridor Long Ashton landfills respectively (see Section 4.4).

Trial Pits identified a capping to the landfill material consisting of cohesive sandy, gravelly clay, between 0.3m and 1.2m thick. The landfill material is highly variable, including but not restricted to waste packaging, timber, chipboard, concrete, masonry, metal, wire, rubber, polystyrene and ash. The thickness of the landfill material varies between 1 and 7m, down to a depth of approximately 5-6mAOD. Packaging waste dominates where the landfill material is thickest, while demolition material is found more towards the northern end of the landfill site.

5.4 Alluvium

The majority of the landfill material and the low-lying ground (which underlies Route Option B) overlies alluvial deposits. These deposits vary in thickness from 0m to 5.7m (typical thicknesses between 4 and 5m), with the base of the strata between 1 and 2mAOD. The alluvial deposits are likely to thin further up valley sides, and as such not likely to subcrop beneath much of Route Option C. Typically these soils are soft to firm grey and brown CLAY, mottled in places with occasional pseudo-fibrous peat.

5.5 Mercia Mudstone

Mercia Mudstone was found to consistently underlie the alluvial deposits.

The top of the Mercia Mudstone is weathered, and down to a depth of approximately 1-2m, reddish brown clay is recovered. The weathered zone is gradational and depth variable. The AVTM Ground Investigation identified that the top approximately 4m of Mercia Mudstone is Zone IVb and Iva which grades down to Zones I-III towards the base. BGS boreholes located adjacent to the A370 encountered moderately compact silt and sand and gravel up to 2.2m, above stiff to hard red brown marl. This is potentially further evidence of a weathered surface to the Mercia Mudstone.

Thin sandstone bands, varying in thickness between 0.45 and 1.65m, within the Mudstone are believed to represent "skerry" bands which are characteristic of the Mercia Mudstone Group (Hobbs et al., 2002). The thicknesses and continuity of the sandstone bands are variable.

5.6 Coal Measures

The Coal Measures are found to occur down to at least 40mbgl. Previous ground investigation has found that the core recovery is significantly less than the Mercia Mudstone, indicating that it is more fractured. The Coal Measures are generally recovered as mudstone with subordinate siltstone and sandstone bands with occasional coal lenses.

Bristol City FC new stadium ground investigation encountered a coal seam in two boreholes with a thickness of 0.7-1.1m (R14). Coal seams were also encountered in the AVTM ground investigation with thicknesses of 0.3-0.4m. The base of this coal seam was found to be between -11.46mAOD and -14.65mAOD. Partial hammering during drilling and loss of flush between depths of -10.63mAOD and -15mAOD were believed to represent historic mine workings associated with the Bedminster Great Coal (URS, 2009), although at these depths the Bedminster Toad Coal may be more likely (see section 6). It is thought that the partial loss of flush could represent collapsed mine workings, although it may have just been the heavy fracturing and poor rock quality of the Coal Measures.

Information regarding the historic coal mining beneath the site is included in Section 6 of this report.

5.7 Conceptual Ground Models

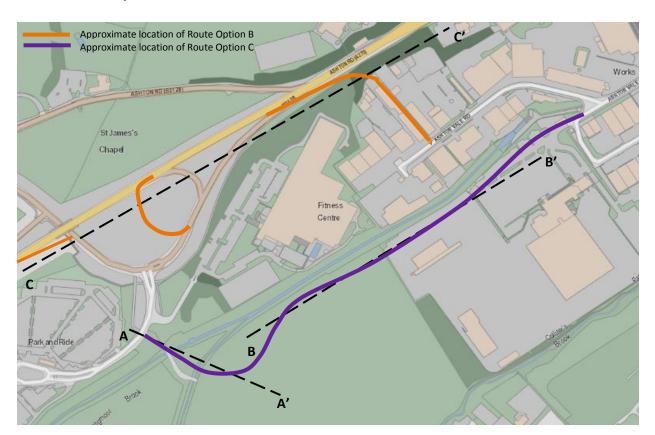


Figure 5-1: Route plan showing location of cross sections A-C.

5.7.1 Route Option B

The expected geology at the western crossing of Longmoor Brook for Route Option B is included in Table 5-1. This has been interpreted from boreholes and trial pits along the route (BH501, BH501A, BH502, BH512, BH513, BH514, BH515, BH516 and BH517). A schematic conceptual cross section is shown below (Figure 5.2).

Figure 5-2: Schematic conceptual cross section.

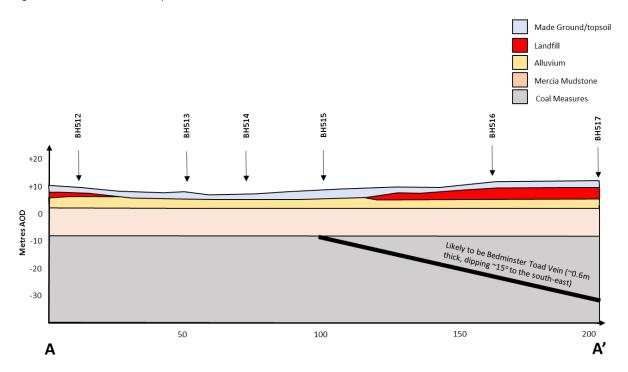


Table 5-1: Summary geology from BH512, BH513, BH514, BH515, BH516, BH517, BH501, BH501A and BH502. (Logs included in Appendix D)

Thickness (m)	Depth to top of strata (m)	Depth to top of strata (mAOD)	Geology	General Description
0-0.3	0	10	Topsoil	
~4-5	0-0.3	10-9.7	Made Ground- Landfill	Highly variable
4-5	5	6	Alluvium	Very soft to firm slightly sandy CLAY with occasional to frequent spongy pseudo fibrous peat.
~2	9-10	2	Mercia Mudstone	Very stiff, high strength CLAY. (Zone IVb)
~9	~11	-1	Mercia Mudstone	Extremely weak, thinly bedded, silty MUDSTONE with very weak thinly to thickly laminated fine grained sandstone beds (Zone I to III)
>4m	~20	-10	Coal Measures	Extremely weak to weak thinly laminated grey partially to distinctly weathered MUDSTONE and SILTSTONE.
				0.32m thick coal encountered in BH504 from 21.08 to 21.40m, 0.36m thick coal encountered in BH515 from 22.94 to 23.30m depth and 0.42m and 0.30m thick coal encountered in BH502 from 19.90 to 20.32 and 21.30 to 21.60m depth

For the majority of the route along the edge of the landfill, the expected geology is shown in Table 5-2. This has been interpreted from boreholes and trial pits along the route (ST57SE91, ST57SE90, ST57SE89, S1, S4 and R2). A schematic conceptual cross section is shown below (Figure 5.3).

Figure 5-3: Schematic conceptual cross section.

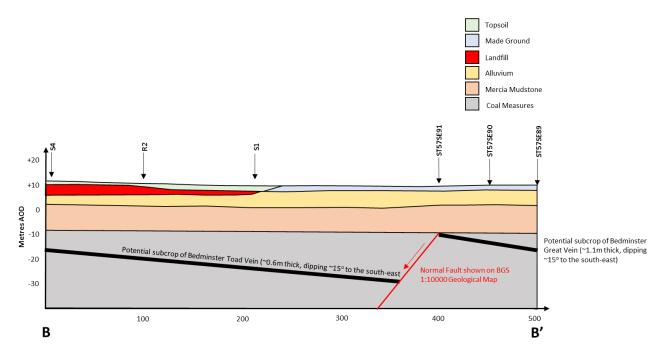


Table 5-2: Summary geology from S4, R2, BH206, S1, ST57SE91, ST57SE90 and ST57SE89. (Logs included in Appendix D).

Thickness (m)	Depth to top of strata	Depth to top of strata (mAOD)	Geology	General Description
0.3	0	11	Topsoil	
Made Ground=2m Landfill=5m	0.3	10.7	Landfill/ Made Ground	Landfill highly variable including paper, wood, plastic with refuse odour.
				Made Ground consists of ash, small rubble and brick fill
5-8	5	6	Alluvium	Grey/green CLAY, soft silty CLAY and PEAT
~2	10	1	Mercia Mudstone	Very stiff CLAY. (Zone IVb)
>10	12	-1	Mercia Mudstone/Redcliffe Sandstone Member	Interbedded extremely weak SANDSTONE, very stiff sandy CLAY and weak MUDSTONE
			Coal Measures	Anticipate similar as in Table 5-1.

The thickness of the Mercia Mudstone is unknown in this section as no boreholes along the route encountered the Coal Measures. Figure 5-3 provides an approximate depth, estimated from other boreholes in the surrounding area. It should therefore be treated cautiously.

When the route crosses into the trading estates at the eastern part of the route, the landfill ceases, and instead made ground consisting of ash and rubble fill is likely to be present. ST57SE91 reports 2m of ash fill over 0.75m of clay and rubble fill and then very soft alluvial clays and peat to about 7.5m depth, sandy gravel to 8.5m and stiff red clay (Mercia Mudstone) to the base of the hole at 10m depth.

5.7.2 Route Option C

The BGS geology viewer indicates that no superficial deposits should be encountered, however boreholes within the area indicate that Alluvium is present in the west.

BGS boreholes from between 1961 and 1965, ST57SE104, ST57SE105, ST57SE113, ST57SE106 and ST57SE73 are located along the alignment of the A370. The nearest borehole to Route Option C link road is ST57SE73 which indicates very limited superficial deposits consisting of reddish sandy loam with some fragments of calcareous sandstone and pebbles of chert, approximately 1.5m, overlying approximately 40m of the Mercia Mudstone Group overlying Coal Measures. The BGS geology viewer indicates that the superficial deposits are Head deposits formed from mass-movement such as solifluction and soil creep.

Within ST57SE106 and ST57SE105, a 1m to 2.2m layer of moderately compact red, brown sand/silt mixture or gravel is encountered above the Mercia Mudstone. This could be either Head deposits or weathered in-situ Mercia Mudstone. The Mercia Mudstone is described as a hard red/brown silty marl, with some layers of soft to firm red/brown silty marl. Further to the west within ST57SE105 and ST57SE104 Alluvium consisting of soft to firm clay and soft to very soft dark grey clayey silt and peat approximately 3m thick is encountered. Figure 5.4 and Table 5.3 show the expected geology beneath Route Option C.

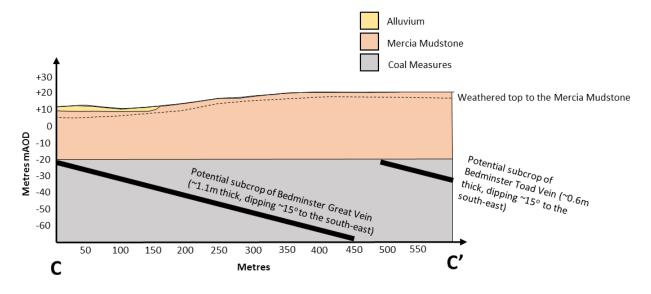


Table 5-3: Typical ground conditions for Route Option C from ST57SE104, ST57SE105, ST57SE106, ST57SE113 and ST57SE73 (Logs included in Appendix D)

Thickness (m)	Depth to top of strata	Depth to top of strata (mAOD)	Geology	General Description
0.3	0	8-21	Topsoil	

Thickness (m)	Depth to top of strata	Depth to top of strata (mAOD)	Geology	General Description
Alluvium present to the west up to 2.9m	0.3	8-9	Alluvium	Soft to firm CLAY and soft to very soft dark grey clayey SILT and PEAT
1-2.2	0.3-3	5-20	Head Deposits/Weathered Mercia Mudstone	moderately compact red, brown SAND/SILT mixture or GRAVEL
40	1.3-5m	4-18	Mercia Mudstone	Hard red/brown silty MARL
		-20	Coal Measures	Anticipate similar as in Table 5-1.

All the boreholes within the area were from before the construction of the A370. Therefore, the superficial deposits are likely to have changed. Potentially the soft superficial deposits may have been removed prior to construction and where embankments are present made ground will be encountered.

5.7.2.1 Route Option C, Slopes

The historical maps indicate that the slope where Route Option C enters the trading estates was created from an old clay pit excavated between 1917 and 1932. The geology of the slope is likely to be Mercia Mudstone. The slope is at a very steep angle (estimated to be 45° to 56°) and vegetated (see site photos in Appendix B). Historical maps do not show any obvious movement of the slope since the clay pit was excavated.

The condition of the slopes is considered 'unproven'; it was not possible to inspect slopes during the walkover due to land-access issues and it has not been possible to acquire any records of slope engineering (as-built) records nor any records of inspection.

Further detailed investigation and inspection of the condition of the slope is recommended, refer to Section 11.

6 Historic Coal Mining

Table 6.1 summarises currently available sources of information regarding historic coal mining beneath the Route Options B and C.

Table 6-1: Summary of Coal Mining records.

Title	Date	Author	Comment
Bristol Metrobus Ashton Vale	30/09/13	Bristol Coal	Brief letter report with hand drawn maps
to Temple Meads Coal Mining		Mining Archives	showing known shafts and coal seam subcrops
Archives		Ltd	
AVTM Coal Mining Risk	04/10/13	CH2MHill	Completed as part of planning application work
Assessment			for the AVTM route along Cumberland Rd
Non-Residential Coal Authority	23/02/2012	Coal Authority	Part of Landmark Envirocheck Report for AVTM
Mining Reports at Ashton Vale,	17/08/2012		Desk Study. Includes map of shafts and details of
Bristol	09/11/2012		shaft treatment if available.
Mine Abandonment Plans	Provided	Coal Authority	Scans of historic mine plans
	11/05/2012		
BCC Archive mining plans	Provided	Bristol City	Mining plans showing shaft locations but no key
	01/11/12	Council	to workings outlines
South Bristol Link Coal Mining	23/08/12	Bristol Coal	Brief letter report with hand drawn maps
Archives		Mining Archives	showing known shafts and coal seam subcrops
		Ltd	mainly to south of Ashton fields
http://mapapps2.bgs.ac.uk/coa	Accessed	Coal Authority	Provides approximate location of shafts and
lauthority/home.html	November		development high risk areas
1:10000 BGS Bristol Geological		BGS	Provides coal seam subcrops
Map			

Figure 6-1: Map showing subcrop of coal seams. Adapted from 1:10000 BGS Geological Map. Dashed lines are subcrop contours of the Ashton Great Vein (interval of 35m). BCM stands for Below Coal Measures. Solid lines indicates first subcrop of coal seam beneath the site.

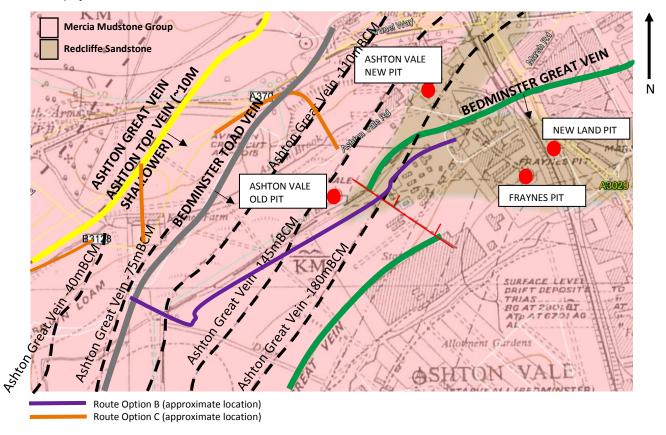


Figure 6-2: Coal Authority map showing the development high risk areas and the locations of mine entries.

Figure 6.2 shows that the area of the route near the Park and Ride is located in a Development High Risk Area. The Coal Authority indicates that a Coal Mining Risk Assessment must accompany the planning application, for both Route Option B and C.

6.1 Dip, Location and Thickness of Seams

Eight coal seams are recorded beneath the area. Stratigraphically, from shallowest to deepest, these are:

- Bedminster Top Coal (~0.3-1.0m thick) (worked);
- Bedminster Great Coal (~1.1m thick) (worked);
- Bedminster Little Coal (~0.5m thick);
- Bedminster Toad Coal (~0.6m thick);
- Ashton Top Coal (~0.1-0.9m thick) (worked);
- Ashton Great Coal (~0.9m thick) (worked);
- Ashton Little Coal (~0.6m thick) (worked);
- Ashton Gays Coal (~0.7m thick) (worked).

A Coal Authority non-residential mining report was obtained as part of the AVTM study and reports the following:

• Six coal seams have been worked in the likely zone of influence of the site at shallow to 340 m depth, and last worked in 1913.

The coal mine abandonment plans provided by the Coal Authority indicate that the Ashton Little Vein, Ashton Great Vein, Ashton Top Vein, Bedminster Great Vein and Bedminster Top Vein have all been worked within the area. Abandonment plans and mine shafts did not indicate that the Bedminster Toad Vein and Bedminster Little Vein have been worked within the area.

The veins are shown on the geological map orientated NE-SW in subcrop beneath the site (approximately 135° dip direction). 1:10000 BGS Geological Map for Bristol and Coal Mining plans indicate that the coal seams dip approximately 15°. However, depths of seams from mine shafts indicate that the dip can vary between 10 and 20°.

Bedminster Little Vein was not encountered within Ashton New Pit, Frayne's Pit, AVTM boreholes, or the 1:10000 BGS Geological Map although the BGS Memoir for Bristol indicates that Bedminster Little Vein was encountered approximately 25m below the Bedminster Great Vein at Staveall Pit. The Bedminster Top Vein does not subcrop beneath the proposed routes.

6.1.1 Route Option B

The 1:10000 BGS Geological Map indicates that the Bedminster Great Vein is affected by a northwest to south-east orientated fault. However, the underlying veins are not shown to be affected, possibly as the veins are not mapped in detail at such a depth. It is likely that the Bedminster Great Vein will be encountered approximately 20mbgl below the eastern section of Route Option B. Figure 5.2 and 5.3 shows the potential subcrop of coal veins beneath Route Option B.

The Bedminster Toad Vein is not indicated on the 1:10000 BGS Geological Map and the Coal Mine Abandonment Plans do not indicate that it has been worked in the area, however the Geological Memoir for Bristol indicates that it can be 75m above the Ashton Great Vein at the Ashton Vale New Pit, which indicates that it could subcrop beneath the Mercia Mudstone at the western part of Route B. Partial hammering during drilling and loss of flush between depths of -10.63mAOD and -15mAOD were believed to possibly represent historic mine workings (URS, 2009). Due to the fault this is most likely to represent workings on the Bedminster Toad Vein, as the Bedminster Great Vein subcrops further to the south. It is thought that the partial loss of flush could represent collapsed mineworkings, although it may have just been the heavy fracturing and poor rock quality of the Coal Measures.

Within the AVTM ground investigation coal seams were encountered in boreholes located near the confluence of Longmoor and New Colliter's Brook (0.32m thick coal encountered in BH504 from 21.08 to 21.40m, BH515 0.36m thick from 22.94 to 23.30m depth and 0.42m and 0.30m thick coal encountered in BH502 from 19.90 to 20.32 and 21.30 to 21.60m depth). These are likely to represent the Bedminster Toad Vein.

6.1.2 Route Option C

The Bedminster Great Vein could be encountered beneath the Mercia Mudstone at ~30mbgl (the thicknesses of the superficial deposits and Mercia Mudstone are unknown at this location), at the western end of Route Option C, where the proposed southbound single lane with hard shoulder onslip road is to be constructed.

The Bedminster Toad Vein could be encountered beneath the Mercia Mudstone at ~40mbgl at the eastern end of Route Option C, where the link road to the industrial estates crosses the clay pit cut face. Figure 5.4 shows the potential subcrop of the veins beneath Route Option C.

6.2 Mine Entries

Mine Shafts

Collapse of mine shafts can present a significant risk in coal mining areas. Information obtained from the Coal Authority in 2016 (Appendix G) indicates the approximate location of the mine entry just north of Longmoor Brook. It is labelled as Ashton Vale Old Pit and is located to the east of the ETM buildings (Figure 6-3). Ashton Vale Old Pit is located approximately 50m from Route Option B. Information from the Coal Authority indicates that it is 198m deep and the treatment is unknown (Coal Authority, 2016).

Ashton Vale Old Pit and Ashton Vale New Pit are also indicated on 1907 coal mine plans. Bearings between the mine entries are between 217° and 220°, with distances approximately 250m. Using the BGS coordinates for Ashton Vale New Pit and the bearings and distances calculated, the position

of Old Pit is estimated and located. This is only a rough estimate due to the uncertainty in the accuracy of the position of Ashton Vale New Pit and also the scale restrictions of the historical mine plans. It does indicate however that the Coal Authority position of Ashton Vale Old Pit is a good estimate.

The 1889, 1894, 1903 and 1904 Ordnance Survey maps shows the position of the Ashton Vale Old Pit. This is represented as a series of small buildings consistently located in the same place. From the available information Figure 6-3 shows the best estimate of the location of Ashton Vale Old Pit, showing the mine buildings, and the Coal Authority estimate.

Figure 6-3 indicates that the Ashton Vale Old Pit should not interfere with the proposed scheme. Assuming 5m width of Ashton Vale Old Pit and 10m of superficial deposits with an approximate angle of friction of 30°, the zone of influence of Ashton Vale Old Pit has been conservatively rounded to 50m.

There are many mine entries located in the surrounding area and there is potential for unknown entries and shafts to be present. Therefore, suitable ground investigation will be needed to locate and thus quantify the risks associated with collapsed shafts.

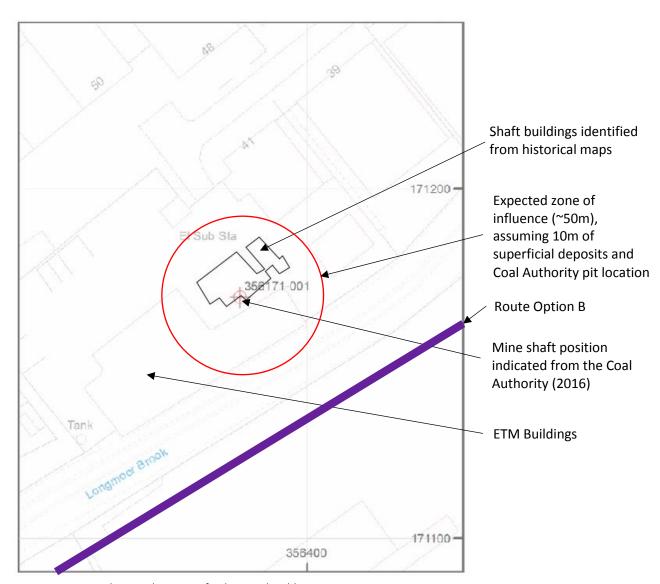


Figure 6-3: Map showing location of Ashton Vale Old Pit.

6.3 Summary

As the routes are located within the Coal Authority Development High Risk Area due to shallow workings a desk based Coal Mining Risk Assessment will be needed to be submitted with planning applications.

From assessing all available information, the Ashton Vale Old Pit is not expected to interfere with the planned route, although there is significant risk for unknown mine entries and shafts to be present which could affect the planned development.

Coal veins are likely to be present approximately 20mbgl beneath Route B at the crossing of Longmoor Brook and the eastern section beneath the trading estates. At the crossing the Bedminster Toad Vein is likely to subcrop and beneath the trading estates the Bedminster Great Vein will subcrop. It is known that the Bedminster Great Vein has been worked in the area.

Coal veins are likely to be present beneath the Mercia Mudstone ~30-40mbgl (the thicknesses of the superficial deposits and Mercia Mudstone are unknown for much of Route Option C). The Bedminster Great Vein is expected to subcrop where the proposed southbound single lane with hard shoulder on-slip road is to be constructed, and the Bedminster Toad Vein is expected to subcrop where the proposed link road to the industrial estates crosses the clay pit cut face.

The CIRIA Special Publication 32 indicates that the maximum height of collapse is often taken as between 5 and 10 times the seam thickness. Using 1.1m as the thickness of the Bedminster Great Vein and assuming that it has been worked, there is the potential for collapse up to approximately 10mBGL, thus significantly affecting the performance of piles.

7 Contamination Risk Assessment

7.1 Introduction

The following contamination risk assessment is based upon the Phase 1 Contaminated Land Risk Assessment carried out for the AVTM scheme. Therefore, this should be treated as a preliminary risk assessment and should be amended after ground investigation has been completed.

- Land contamination is considered due to the following reasons:
- Risk presented to humans this includes construction workers, site users post construction, and nearby residents and businesses;
- Risk to the water environment e.g. surface waters and groundwater;
- Risk to building structures aggressive ground conditions; and
- Cost disposal of contaminated ground can be major cost to projects.

Table 4.1 produced from the Envirocheck (2012) report, describes the previous land uses that the site has undergone. The key historical land uses that could lead to contamination are:

- 1886-1890- Ashton Vale Works (Iron Works, Brick and Coke) on north side of Longmoor Brook.
- Frayne's Colliery
- Spoil heaps and clay pits
- 1930-1932- Ashton Vale Works described as brick and tile works
- 1946- Possible labour or military camp occupying current car auctions site
- 1946- Filling of southeast corner of Ashton Field landfill site
- 1948-54- Saw Mills expanded and timber yards and joinery works make up eastern half of trading estate
- 1963- Construction of Ashton Vale Road and trading estate with depots and builders yard
- 1983- ETM site new buildings

Table 7.1 shows the potential contaminants that could be associated with the above land uses. This may not be a definitive list.

Table 7-1: Potential contaminants (not definitive list)

Potential Contaminants
Asbestos
Oil/Fuel Hydrocarbons
Polycyclic aromatic hydrocarbons (PAHs)
Heavy metals
Volatile/Semi Volatile Organic Compounds (VOCs, SVOCs)
Inorganics (ammonia, chloride etc.)
Ground gases
Pathogens, faecal coliforms

7.2 Sources, Pathways and Receptors

Table 7.2 shows the potential sources, pathways and receptors at the site

Table 7-2: List of sources, pathways and receptors at the site

Sources	Pathways	Receptors			
	Ingestion, Inhalation, Dermal Contact		Construction workers		
Contaminated Soil and		Human Health	Future Maintenance Workers		
Groundwater	Leaching, piling	Groundwater (minor aquifer)			
	Leaching, piling	Surface water			
	Migration via permeable strata	Infrastructure, fo	Infrastructure, foundations		
	Phytotoxic uptake	Plants			
Ground gases	Migration via permeable strata	Humans and infrastructure			

Table 7.3 shows the risks identified as part of the Phase 1 Contamination Risk Assessment for the AVTM project, completed in 2010 and modified for this project.

Site reconnaissance completed for the AVTM project did not identify any protected or invasive species in the site although the Phase 1 report does emphasize that they cannot be discounted at this stage as a detailed ecological survey had not been undertaken.

Further details of the ground conditions encountered during the AVTM ground investigations are detailed in Section 6 above.

7.3 Implications to Scheme

The majority of risks relating to land contamination can be mitigated as part of the scheme design, or as part of Health and Safety plan, through procedures to limit exposure to land contamination (for example, rules stopping eating and drinking on site, use of gloves, overalls, etc.).

The scheme design will need to address risks to the water environment, for example, piling through contaminated ground will require a piling risk assessment and the piling will be required to take measures to limit spread of contamination.

The key implication to the scheme is cost associated with disposal of ground contamination, in particular the areas of landfill. Some of the route options overlie landfill materials, and there are few options to treat or re-use this material. Disposal of this material is likely to be costly, at approximately $£250/m^3$.

Table 7-3: Risks associated with contamination on study site during redevelopment (classification assumes mitigation is applied as detailed in the comment column)

Source of Contamination	Pathways	Receptors	Consequence of Occurrence	Likelihood of Occurrence	Potential Significance (Risk Classification)	Comment
Contaminated	Dermal Contact with Soils		Minor Low likeliho		Very low risk	Mitigation to be set out in CEMP to manage H+S risks, environmental risks
Soil/Groundwater beneath site (made ground, landfill etc.)	Inhalation of fugitive soil dust	Human health Construction Workers	Minor	Low likelihood	Very low risk	Mitigation to be set out in CEMP to manage H+S risks
	Inhalation of vapours outdoors		Minor	Low likelihood	Very low risk	Mitigation to be set out in CEMP to manage H+S risks
	Dermal Contact with Soils		Medium	Unlikely	Low Risk	Suitable PPE to be deployed; Management of incidence of unacceptable risk undertaken as part of H+S procedures
Contaminated Soil beneath site (Made Ground	Inhalation of vapours outdoors	Human health Future Maintenance Workers	Medium	Low likelihood	Low Risk	Suitable PPE to be deployed; Management of incidence of unacceptable risk undertaken as part of H+S procedures Suitable PPE to be deployed;
	Ingestion of soil		Medium	Unlikely	Low Risk	Management of incidence of unacceptable risk undertaken as part of H+S procedures
	Buildup of ground gases in building voids		High	Low Likelihood	Moderate Risk	Structures to be designed to minimise likelihood of ground gas accumulation. Entry to confined spaces controlled.
Contaminated Soil beneath site (Made Ground)	Phytotoxic Uptake (plant uptake via roots)	Plants within landscaping schemes on site once redeveloped	Minor	Low likelihood	Very low risk	Consideration required in landscaping plans;
Contaminated Soil beneath site (Made Ground)	Enhancement of Pathway via piling; (also, creation of	Controlled waters receptors	Minor	Unlikely	Very low risk	Possible development foundation solution. Typically mitigated using EA guidance;

Source of Contamination	Pathways	Receptors	Consequence of Occurrence	Likelihood of Occurrence	Potential Significance (Risk Classification)	Comment
	soakaway infiltration pathway through use of SUDs);					Mitigation to be set out in CEMP to manage H+S risks
Contaminated Soil beneath site (Made Ground)	Disturbance of soils leading to leaching; migration via unsaturated zone	Controlled waters Groundwater beneath the site (Minor Aquifer)	Medium	Low Likelihood	Low risk	Groundwater regime unknown within minor aquifer and hydraulic continuity with made ground and watercourses. Incidence of unacceptable risk cannot be discounted. Further characterisation is warranted
Contaminated soil/groundwater	Migration via permeable strata	Infrastructure , foundations	Minor	Low Likelihood	Very low risk	Foundation design to be based on ground investigation results and appropriate for the ground conditions encountered.

8 UXO

A detailed UXO report was carried out for the AVTM (which encompasses Route Option B) - RPS Explosives Engineering Services (2012).

The findings of the AVTM UXO report showed that Anti-Aircraft Artillery (AAA) positions and other WWII targeted positions are not located in the direct vicinity of the AVTM. However, many of these positions are found throughout Bristol. The nearest is on the outskirts of Bishopsworth at -2.62848, 51.4228, approximately 1.43km to the south. Eleven other AAA defenses are located within 10km of the site.

The AVTM UXO report also identified a decoy site at Long Ashton 1.91km north west and 6.9km south east, which increases the chances of unexploded shells within the area. There is also the possibility that the railway located at Ashton Gate may have been targeted during WWII.

The AVTM site was classified as a moderate risk which implies a similar risk for Route Option B, no specific studies have been undertaken for Route Option C but it is assumed that the risk will be at least moderate.

As discussed in Section 3, it is recommended that a detailed UXO is acquired prior to ground investigation and once a decision on the preferred Route Option is made.

9 Proposed Development

The MetroWest Scheme proposes the closure of the Ashton Gate level crossing on the Portishead rail line, located off the A3029 Winterstoke Road in southwest Bristol (refer to Figure 2-1).

Alternative access options to the Ashton Gate Trading Estate are being considered. Two Route Options are under review, Route Option B and Route Option C. A summary of these Options is as follows.

9.1 Route Option B

Two concrete integral bridges are proposed for this option spanning across Longmoor Brook & New Colliter's Brook respectively. The bridge decks support 2 lanes of traffic and two 2m wide pedestrian paths on both sides.

Decks include an insitu slab supported by 11No. 9m span precast TY beams across the reinforced concrete abutments, which are in turn supported by two rows of CFA piles.

N2 containment Vehicle parapets with 1.4m high with infill mesh are proposed at the top of the proposed edge beams.

Backfill to the abutments is composed of 6N granular fill, embankments slope at 1:2 slope.

Any requirements for ground treatment to mitigate differential settlement between embankment and structures are subject to further design.

9.2 Route Option C

An elevated bridge ramp is proposed to carry the highway from the at-grade junction to the top of the existing embankment slope. A multi-span viaduct with 2 pairs of 30m span weathering steel beams composite with an in-situ deck is considered. The concrete abutment at the top of the slope is set back to avoid any instability of the existing slope.

Various options for Retaining walls at the A370 slip road are currently under consideration. Depending on land made available there may be either a secant piled wall or an earthwork embankment (no retention). The existing ditch adjacent to the slip road may need to be culverted.

10 Geotechnical Risks

Based on the available information described above, an assessment is made below of the main potential geotechnical risk and issues that could affect the proposed Route Options. Geotechnical risk is presented relative to each Route Option.

These risks are used to form the basis of further studies and the objectives of intrusive ground investigation work. Recommendations for further studies in present are presented in Section 11.

Geotechnical Risk	Route Option B	Route Option C								
Settlement (Highly Compressible Soils)	Highly compressible soils are present. These are mostly the superficial natural deposits overlying the low-lying ground to the south (prevalent to Route Option B but are also likely to parts of Route Option C).									
. ,	Fill and made ground are also present, with unknown properties and may also indicate potential for large and unacceptable amounts of settlement.									
	Landfill is present underlying Route Option B which is expected to be highly compressible.									
Frost Susceptibility	Cohesive alluvial deposits are present and of Route Option C. These deposits can be	the Mercia Mudstone could be exposed as part susceptible to frost heave.								
Shrink/Swell	Parts of the alluvial deposits and the Merc shrinking or swelling behavior.	ia Mudstone has potential for significant								
Heave and chemical attack.	Alluvial deposits have the potential for loc	ally high concentrations of sulphate as does the ons, oxidization can result heave, and can also								
Slope Stability	Slope stability risk with respect to Route Option B is likely to be confined to the banks of local water courses and the slopes of the existing landfill. The stability of existing slopes should be reviewed during detailed design.	There is risk with respect the stability of existing slopes which will need to be quantified by further inspection* and ground investigation. *Note that the area of site with the steepest slopes (and potentially the greatest risk) were out of bounds and could not be inspected as part of this study. It will be necessary to inspect these slopes (clay pit cut face) in order to evaluate their condition and in order to progress the design. Recommendation on further study is provided in Section 10. The area of site which could not be inspected is as follows: Excerpt of drawing number 674946.BD.29.01-OPC-01 B (Appendix A)								

Coal Mining Subsidence	within close proximity to the site; the rout Development High Risk Area (refer to Sect									
High Groundwater/ Flooding	Option B presents a solution on generally low-lying land and over land prone to flooding. Consequently, high groundwater levels are a risk throughout the site. Note also potential artesian groundwater conditions, therefore potential hazard with respect to the management of porewater pressures.	Option C presents a solution on land at a higher elevation (than Option B) which is outside of designated flood plain. However, potential artesian groundwater conditions could occur on the low-lying ground within the trading estate or by cutting into natural slopes, and as such there may be risk with respect to the management of porewater pressures.								
Existing Assets and Utilities.	There is risk that changes in ground stress from the proposed development may cause failure or lead to unacceptable movement of existing highways, utilities and assets (such as existing buildings, retaining structures, culverts, etc.).									
	There are known assets e.g. Longmoor Brook Culvert, landfill infrastructure (drainage and gas venting/ management), as well as numerous	There are known assets e.g. slopes, highways drainage, an existing gabion wall at the David Lloyds Sports Centre as well as numerous services.								
	services.	With respect to the 'David Lloyd gabion wall'. It is recommended that as-built information is obtained (if possible) and ground investigation undertaken local to this asset in order to define/confirm ground conditions and as built information (e.g. foundation dimension, drainage provisions etc.). This information will be necessary in order evaluate the existing condition of the retaining structure, the effect of a highway to the crest of the wall and any requirements for strengthening/improvement if necessary. Recommendation is provided in Section 10.								
	A full inventory and survey of existing highways, utilities and assets should be established. This will assist in evaluating risk assessment (to existing highways, utilities and assets).									
UXO	A moderate risk is assumed subject to a de Route Option.	etailed UXO risk assessment of the preferred								

11 Recommendations

11.1 Further Studies

In order to further evaluate geotechnical risk and for the purpose of further assessment of potential sources of contamination, further studies and ground investigation will be necessary. The scope of work will be dependent on the preferred Route Option and is based upon the proposed development (highlighted in Section 9).

It is recommended that further studies are undertaken prior to ground investigation:

Further Studies	Route Option B	Route Option C
Detailed study and inspection of existing slopes.	Not applicable.	Undertake a detailed inspection of the existing slopes which have thus far been out-of-bounds due to land access issues: Excerpt of drawing number 674946.BD.29.01-OPC-01 B (Appendix A) The following work is recommended prior to ground investigation: Any as-built information on the construction (excavation/
		 engineering) of the slopes to be reviewed. And; Any records of previous inspection to be reviewed. Then; Slopes to be inspected for key indicators of existing instability;
		 Report required: Stability of Existing Slopes, presenting the key findings with recommendations with respect to furthering the design of Route Option C.
Coal Mining Risk Assessment	to ground investigation, and should b	d a Coal Mining Risk Assessment is a is should ideally be completed subsequent be in accordance with the Coal Authority Approach to Development Management.
Detailed UXO Risk Assessment.	Mandatory requirement prior to grou	undworks and ground investigation.

11.2 Outline Scope for Ground Investigation

Recommendation for ground investigation is presented in Appendix E and is for the permanent works element of the proposed development highlighted in Section 9.

Requirements for ground investigation is dependent upon the complexity of the proposed Route Option and sensitivity of the design. The Outline Scope presented below should be reviewed against the scheme design prior to fieldwork.

Parts of Route Option B have been investigated for and behalf of the Client and for the purpose of AVTM. On the understanding that ground investigation for the AVTM will be available (without caveat) for the design of Route Option B the Outline Scope has been optimized to those parts of the site not previous subject to ground investigation. Should this not prove the case, further ground investigation will be necessary for the purpose of Route Option B.

12 Conclusions

This report has been prepared to address the following aspects of the proposed alternative access options for the Ashton Gate Trading Estate, in west Bristol:

- Collation and summary of relevant site data and ground investigation information undertaken in the vicinity, and geotechnical observations from a site walkover survey
- Development of a ground model and assessment of likely geotechnical, hydrogeological and geoenvironmental risks
- Recommendations for further ground investigation.

The following conclusions are made with respect to the ground conditions and ground-related risks:

- The conceptual ground model for Option B, comprises:
 - 4-5m of highly variable Landfill material, overlying,
 - 4-5m of very soft to firm Alluvium, overlying,
 - o 2m of weathered Mercia Mudstone, overlying,
 - o 9m of Mercia Mudstone, overlying,
 - o Coal Measures.
- The conceptual ground model for Option C, comprises:
 - o Potentially Alluvium under the western section of the route,
 - 1-2m of Head deposits/weathered Mercia Mudstone, overlying,
 - o 40m of Mercia Mudstone, overlying,
 - o Coal Measures.

The key ground-related scheme hazards and risks are included in Section 10. The major site specific hazards are considered to be:

- Settlement-
 - highly compressible ground associated with alluvial deposits and unknown properties associated with landfill material and made ground.
- Slope stability-
 - uninspected slope associated with a historic clay pit north of David Lloyd's sports centre.
- Coal mining-
 - potential for unknown historic mine shafts and shallow coal working which could affect the performance of piles. The routes are located in a Coal Authority Development High Risk Area.

Contaminated land is expected due to the historic landfills located within the area. The majority of risks relating to land contamination can be mitigated as part of the scheme design, or as part of Health and Safety plan. The key implication to the scheme is cost associated with disposal of ground contamination. Disposal of this material is likely to be costly, at approximately £250/m3.

13 References

British City Council. *Know Your Place*. [Online]. [Date accessed: 21/09/2016]. Available from http://maps.bristol.gov.uk/knowyourplace/

British Geological Survey. 1993. Geology of the Bristol District. Memoir for 1:63360 geological special sheet (England and Wales).

British Geological Survey. 1999. 1:63360 Series (England and Wales) Special Sheet – Bristol district. Bedrock and superficial deposits

British Geological Survey. 2004. 1:50000 Series (England and Wales) Sheet 264 – Bristol. Bedrock and superficial deposits

British Geological Survey. *Geology of Britain viewer*. [Online]. [Date accessed: 21/09/2016]. Available from http://mapapps.bgs.ac.uk/geologyofbritain/home.html

CH2M. 2016. MetroWest Ashton Gate level crossing closure – high level review of geotechnical and geo-environmental issues for proposed alternative access route.

CIRIA. 2001. Publication C570- Engineering in Mercia Mudstone

CIRIA. 2002. Special Publication 32- Construction over abandoned mine workings

Environment Agency. What's in your backyard? [Online]. [Date accessed: 21/09/2016] Available from http://apps.environment-agency.gov.uk/wiyby/

Geological Survey of England and Wales. 1995. 1:10000, sheet number: ST57SE

Google. *Google Earth*. [Online]. [Date accessed: January 2017]. Available from https://www.google.co.uk/earth/

Halcrow Group Limited. 2010. *Bristol Rapid Transit Route Ashton Vale to Bristol City Centre, Phase I Preliminary Risk Assessment*. Prepared for West of England Partnership.

Halcrow Group Limited. 2012. *Ashton Vale to Temple Meads and Bristol City Centre, Geotechnical Desk Study*. Prepared for West of England Partnership.

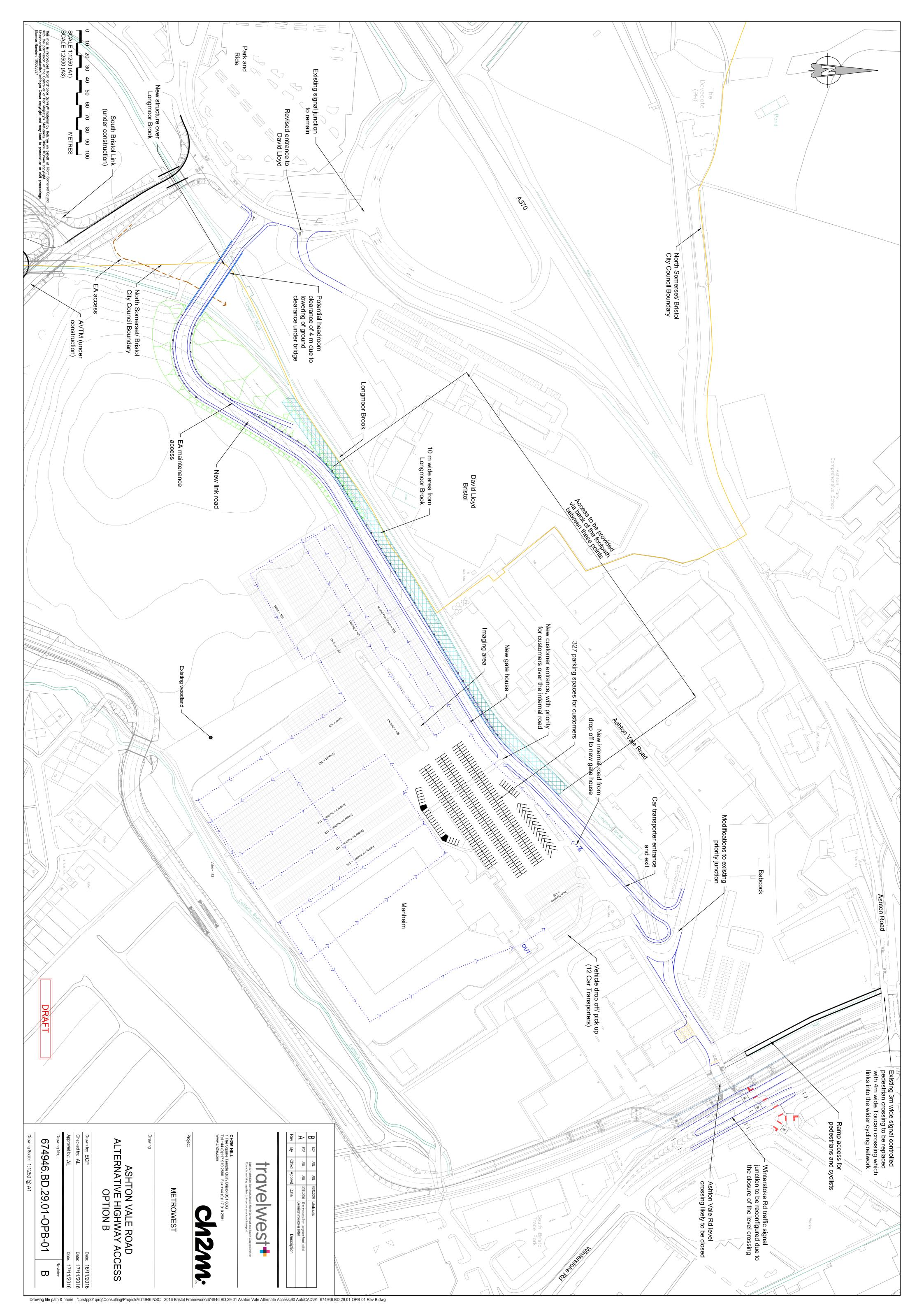
Hobbs, P., Hallam, J.R., Forster, A., Entwisle, D., Jones, L.D., Cripps, A.C., Northmore, K.J., Self, S. and Meakin, J.L. 2002. *Engineering geology of British rocks and soils: Mudstones of the Mercia Mudstone Group.*

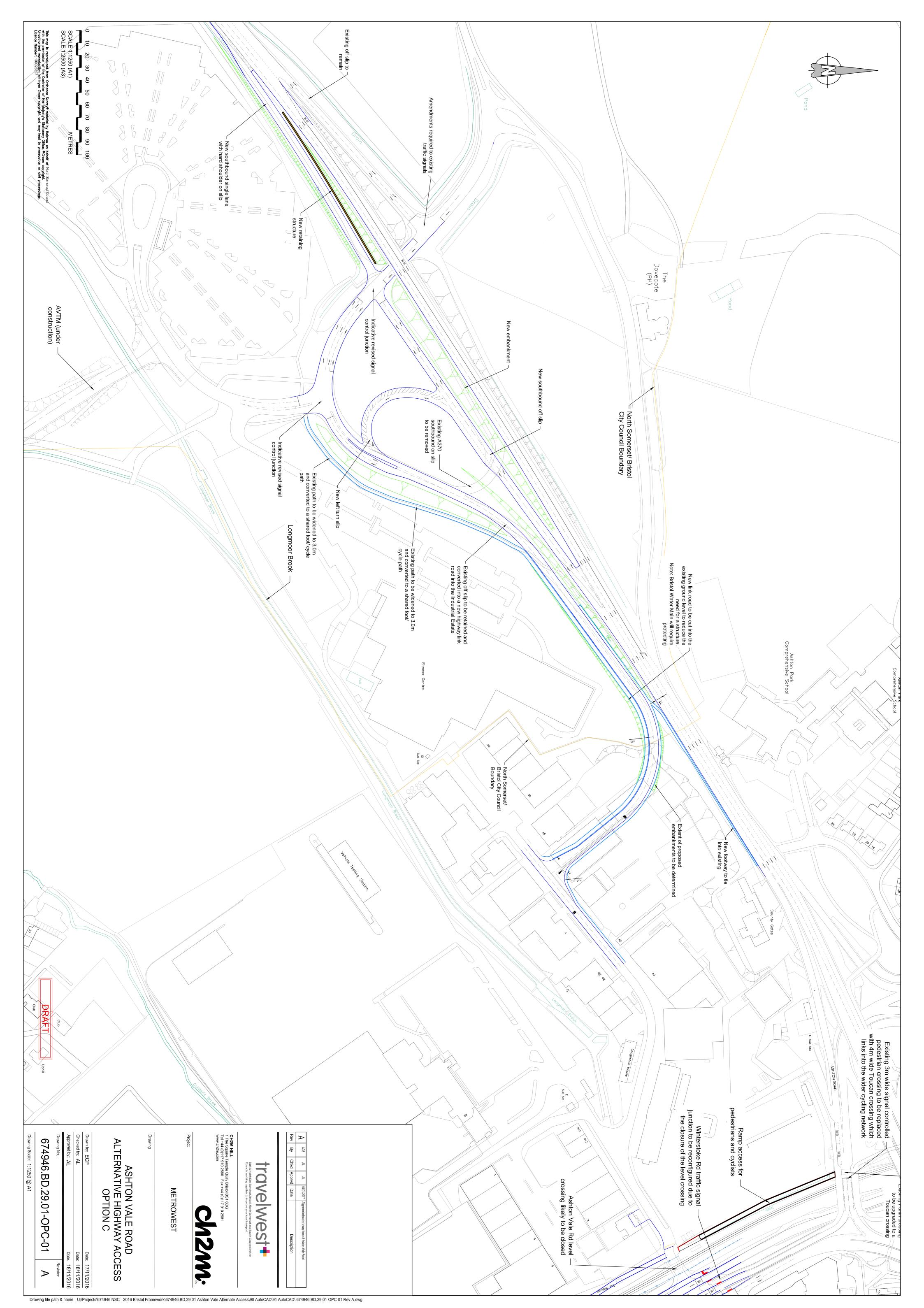
Landmark Information Group. 2012. Non-residential Coal Authority Mining Report. Site at Ashton Vale, City of Bristol, Bristol

Landmark Information Group. 2016. Shaft Plan and Data Sheets. Manheim Auctions, 33 Ashton Vale Road, Ashton, Bristol, BS3 2AZ

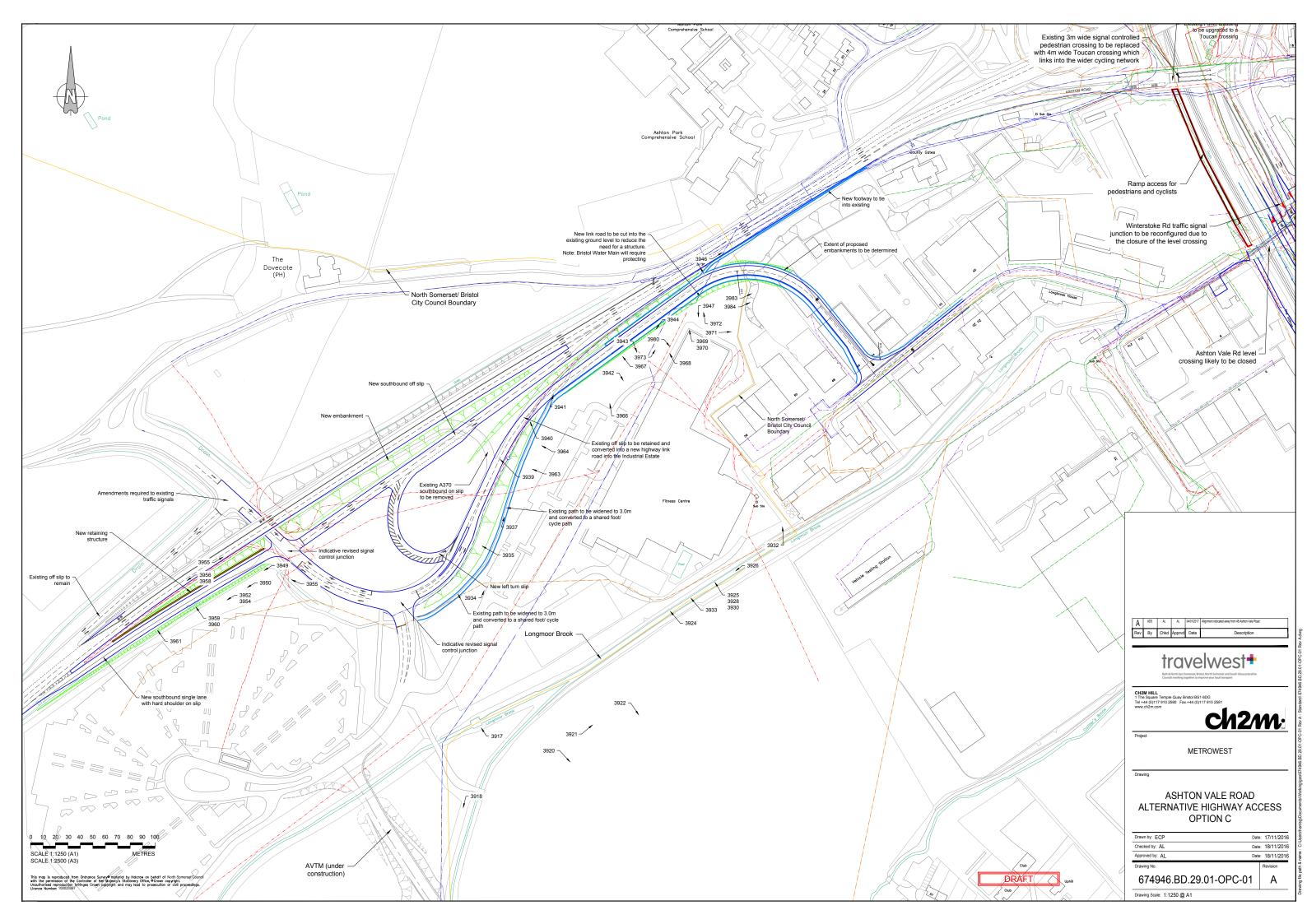
Ordnance Survey. 2012. Bristol West and Portishead. OS Explorer 154.

Ove Arup and Partners International Limited. 2002. Land at Ashton Vale Geo-Environmental Report.

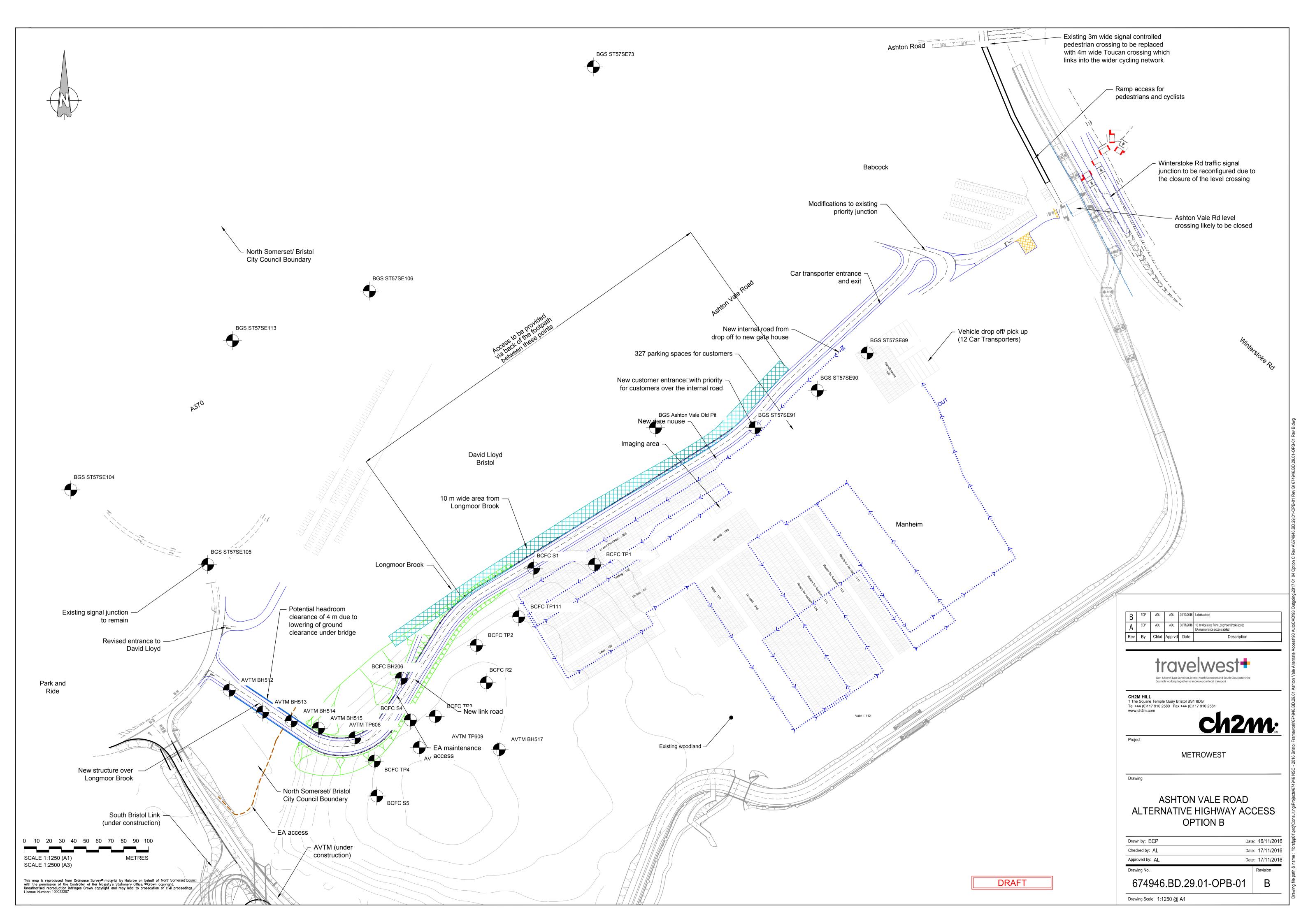

RPS. 2012. Ashton Vale to Temple Meads, Bristol, Desk Study for Potential Historic Unexploded Ordnance Contamination.

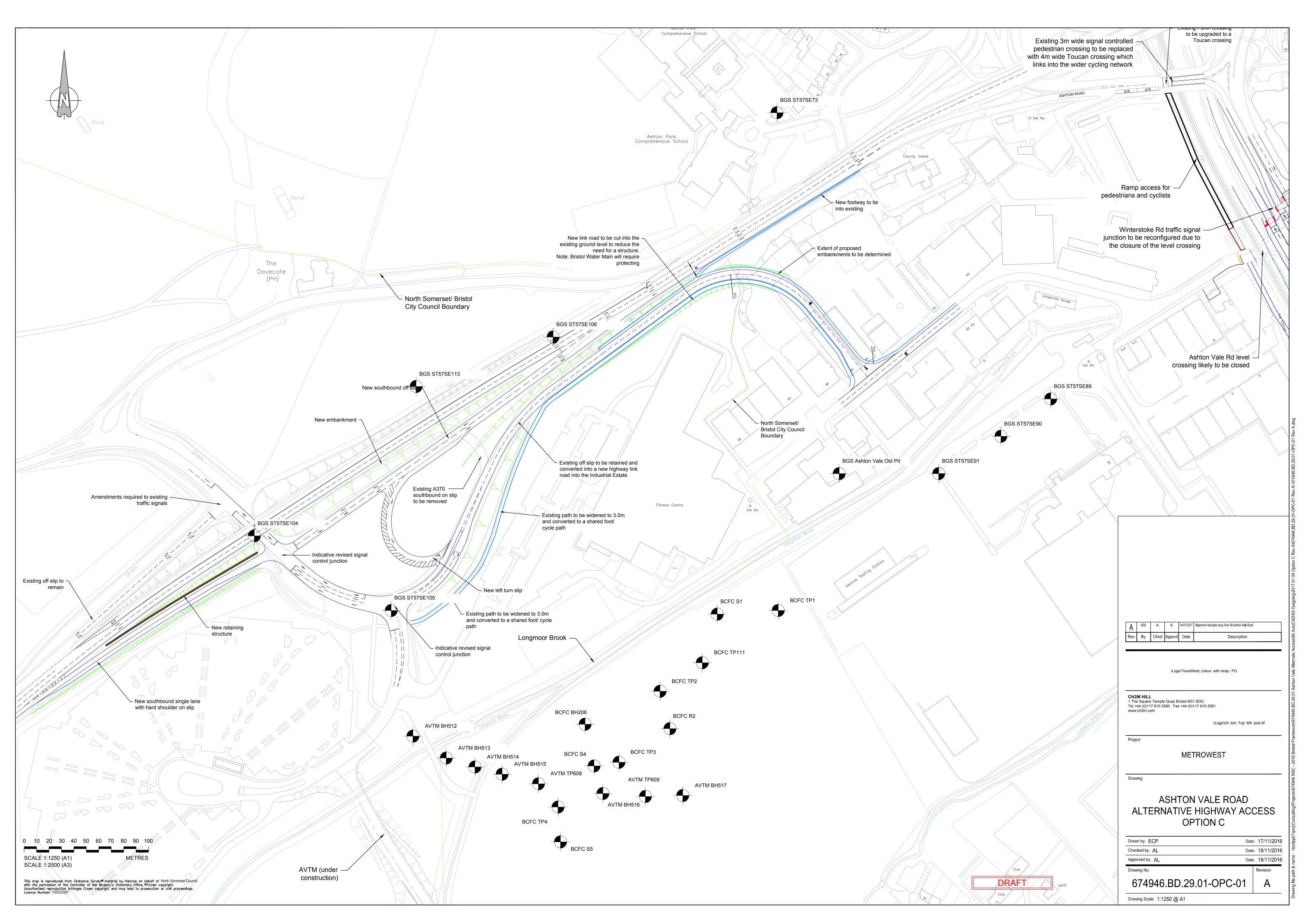

Structural Soils. 2013. Ashton Vale to Temple Meads and Bristol City Centre, Ground Investigation

URS. 2009. Bristol City FC Ashton Vale Site Assessment, Geo-Environment Interpretative Report.


WSP Energy and Environment. 2009. Environmental Statement: Ashton Gateway Project.

Appendix A Route Options


Appendix B Site Walkover, Photos and Plan



Appendix C Previous Exploratory Hole Location Plan

Appendix D Previous Exploratory Hole Logs

Contract:							Clie	ent:			Boreho	le:	
Bristol R	apid	Transit	Ashton Vale to	Temple !	Mead	s				Bristol City Council		В	H512
Contract Ref	:		Start:	28.05.	13	Grou	nd Le	vel (m	AOI): National Grid Co-ordinate:	Sheet:		
	7273	305	End:	30.05.	13			9.74		E:356037.4 N:170959.0		1	of 10
		Sample	es & Testing		echan		_	fill			ced el	Depth	Material
Depth (m)	No	Туре	Results	TCR Solve (%)	CR R %) (RQD (%)	If (mm)	Backfill	Water	Description of Strata	Reduced Level	(Thick ness)	Graphic Legend
-										TOPSOIL: Soft brown reddish gravelly very clayey SILT. Gravel is subrounded fine to coarse of sandstone and limestone. (TOPSOIL)	-	(0.30)	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0.50	1 2	B ES								MADE GROUND: Soft friable brown mottled grey sandy very gravelly CLAY. Gravel is subangular to subrounded fine to coarse of limestone and silica, with gravel size bricks, asphalt, gravel size concrete, polythene sheet and frequent cobbles.	9.44	0.30	
0.50	2	ES								(MADE GROUND)	-	(0.90)	
1.00	3 4	B ES									-	-	
1.20-1.65	1	SPT	4,2/2,7,5,7 N=21							MADE GROUND: Stiff reddish brown slightly gravelly slightly sandy CLAY with	8.54	(0.20)	
1.20-1.40 1.30	8	B HP	$c_u = 150/125/140$							occasional charcoal. Gravel is fine to coarse subangular brick, concrete and	8.34	1.40	
1.40-2.20	9 5	B ES								ceramic. (MADE GROUND) MADE GROUND: Greyish black sandy clayey fine to coarse GRAVEL of concrete, brick, limestone and charcoal. (MADE GROUND)	-	-	
										at 1.40m depth fine to coarse angular gravel of concrete. odour of hydrocarbon.	-	(0.80)	
-									<u>‡</u>	below 2.00m depth concrete.	754	2.20	
2.20-2.65	2 10	SPT D	1,1/1,1,1,1 N=4						÷	MADE GROUND: Soft greyish brown slightly gravelly slightly sandy CLAY. Gravel is fine to coarse concrete and limestone. (MADE GROUND)	7.54	(0.40)	
										(MADE GROUND)	7.14	2.60	

	Boring Progress and Water Observations											
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth							
28/05/13	15:00	3.80	None	121	3.80							
28/05/13	17:00	5.00	None	121	2.40							
29/05/13	08:00	5.00	None	121	2.80							
29/05/13	16:45	15.50	8.20	121	3.00							
30/05/13	08:00	15.50	8.20	121	2.60							
30/05/13	15:45	25.00	8.20	121	2.80							

GINT_LIBRARY V8_04.GLB1Log_COMPOSITE_LOG | 727305_BRISTOL_RAPID_TRANSIT.GP1 - v8_04 | 29/10/13 - 16:53 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Method Used:

General Remarks

- 1. Location CAT scanned prior to drilling and hand dug inspection pit to 1.20m depth.

 2. Dynamic sampling from 1.20m to 9.70m depth.

 3. Rotary coring from 9.70m to 25.00m depth.

 4. Water strike at 3.80m depth, rising to 2.20m after 20 minutes.

 5. Water flush used.

 6. SPT harmone FOLUSO 2013 (F = 65.94%), used.

- 6. SPT hammer EQU250-2013 ($E_r = 65.94\%$) used.

			1	All dimension	s in metres	5	Scale:	1:14
d Dynamic samp Rotary Cor	P9	Plant Used: Com	acchio MC300	Drilled By:	JG	Logged By:	BSaimen + REWilliams	Checked By:

Contract:							Cli	ent:			Boreho	ole:	
Bristol R	apid	Transit	Ashton Vale	e to T	emple Me	ads				Bristol City Council		В	H512
Contract Ref			Sta	art: 2	28.05.13	Grou	ınd Le	evel (m	AOI	D): National Grid Co-ordinate:	Sheet:		
7	273	305	En	d: 3	30.05.13			9.74		E:356037.4 N:170959.0		2	of 10
Depth (m)	No		s & Testing Results	,	TCR SCR	anical RQD	If	Backfill	Water	Description of Strata	Reduced Level	Depth (Thick ness)	Materia Graphi Legend
2.60-3.10	11	В			(%) (%)	(%)	(mm)			MADE GROUND: Greyish black brown slightly clayey sandy GRAVEL of fine to coarse brick, concrete, limestone and charcoal. (MADE GROUND)	- - - -	(0.50)	
3.00	7	ES								strong odour of hydrocarbon. MADE GROUND: Soft reddish brown gravelly slightly sandy CLAY with rare	6.64	3.10	
3.20-3.90	6	U _(UT100) ES	50% recov	ery						fragments of shell. Gravel is fine to coarse subangular medium mudstone, quartz, ceramic and brick. (MADE GROUND)	-	-	
3.70-4.10	12	D							<u>‡</u>		-	(1.00)	
4.00		НР	c _u =20/2	5						at 3.90m depth rare fragments of white shell. Soft low strength grevish brown slightly	5.64	4.10	
4.20-4.40 4.20	13	D HP	c _u =25/30/	25						Soft low strength greyish brown slightly sandy CLAY with rare brown pseudo fibrous peat and lenses of brown silt/fine sand. (ALLUVIUM)	-	-	
4.40-4.90	14	U _(WS)									-	-	
4.95-5.00 5.00-5.45	15 3	D SPT	1/1,1,1, N=4	1						between 4.95 and 5.00m depth bed of brown plastic pseudo fibrous peat.	-	- -	

	Boring Pr	rogress and	Water Ob	servations			Ca	noro1	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth		Ge		Kemarks		
						All dimension	ons in metres		Scale:	1:14	
Method Used:						 Drilled By:	JG	Logged By:	BSaimen + REWilliams	Checked By:	AGS

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 16:53 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:								Clie	ent:								Boreho		
		Transit	Ashton V										ity Cou					В	H512
Contract Ref			5	Start:	28.0	5.13	Grou	nd Le	vel (m	AOI)):	Nationa	al Grid Co-	ordinate	:		Sheet:		
•	727 .	305	1	End:	30.0	5.13		(9.74			E:3	56037.	4 N:1	70959.	0		3	of 10
		Samples	s & Testin	ig	1	Mecha	anical	Log	=	r							ed 1	Depth	Material
Depth (m)	No		Resu				RQD (%)		Backfill	Water		D	Description	of Stra	ıta		Reduced Level	(Thick ness)	
(m) 5.70-5.90 5.70 5.70 6.35-6.50 6.50-7.20	No 16	D HP U(UT100) HP	Resu c _u =25/3 58 blc 71% rec c _u =12/2	30/37 DDWS	TCR (%)	(%)	(%)	II (mm)	Bac	M M	fibro	. below vn with ous peat.	5.50m de frequent b	pth becorown sp	omes grey ongy pseu	rish ado	Red		Legend
											subr	at ounded lstone.	7.60m de gravel	epth fin of lin	e to coa nestone a	rse and		- -	
	<u> </u>				<u> </u>				/////								1.94	7.80	
D		Duaguaga	1 337-4	01	4 :			П											

	Boring Pr	ogress and	Water (bservations				<u> </u>	1	D 1		
Date	Time	Borehole Depth	Casing Depth	Diameter	Water Depth			Ge	nerai	Remarks		
		Бери	Бери	(11111)	Бериг							
							All dimensi	ons in metres	3	Scale:	1:14	
Method Used:		sampling -	+ Pla		acchio MC	300	Drilled By:	JG	Logged By:	BSaimen + REWilliams	Checked By:	AGS

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 16:53 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:					Client:			Boreho	le:	
Bristol Rapid T	ransit Achton	Vale to Te	mnle Mo	ads	Cheff.		Bristol City Council	Dorono		H512
Contract Ref:	i ansit i tsiitoii	Start: 28			nd Level (m			Sheet:		11012
72730)5		0.05.13		9.74		E:356037.4 N:170959.0		4	of 10
	amples & Tes	sting	Mech	anical I	Log 📜	ı		sed sl	Depth	Materia
	Туре	esults T	CR SCR %) (%)	RQD (%)	Backfill (mm)	Water	Description of Strata	Reduced Level	(Thick ness)	Graphic Legend
7.80-8.40 19 7.80	B HP c _u =180	0/200/200					of greenish grey clayey sandy. Very stiff very high strength reddish brown mottled greenish grey silty CLAY with occasional black and brown partly decomposed rootlets. (MERCIA MUDSTONE GROUP Zone IVb) between 7.80 and 8.70m depth occasional black and brown partly decomposed rootlets. at 8.30m depth cobble of angular greenish sandstone. at 8.30 and 8.70m depth occasional greenish grey irregular pockets completley	-	-	
8.50	HP c _u =	>225					weathered sandstone/siltstone.	-	-	
	PT(c) 5,6/8,	10,12,12 =42					at 8.70 to 9.15m depth occasional black and brown partly decomposed	-	-	<u>x </u>
	$egin{array}{ccc} D & & & & & & & & & & & & & & & & & & $	80/187					rootlets.	-	(2.10)	x - x - x - x - x - x - x - x - x - x -
9.60 9.70-11.00	HP c_u =	⇒225 _	1					-0.16	- - - - - 9.90	x
10.15-10.35 22	CS	1	00 52	21	NI 80 170		Very weak thinly to thickly laminated greenish grey fine grained SANDSTONE with extremely weak thinly to thickly laminated reddish brown silty mudstone. Bedding fractures are 5 to 15° very closely to closely spaced undulating rough open clean/infilled with reddish brown clay. (MERCIA MUDSTONE GROUP Zone I) at 10.20m depth occasional lenticular pockets (<3mm) of white gypsum.	-	-	

	Boring Pr	rogress and	Water Ob	servations				Ca	n orol	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	nerar	Remarks		
							All dimension	ons in metres	S	Scale:	1:14	
Method Used:	Dynamic Rotai	sampling - ry Cored	Plant Used		acchio MC	300	Drilled By:	JG	Logged By:	BSaimen + REWilliams	Checked By:	AGS

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 16:53 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:							Cli	ient:			Boreho		
Bristol R	apid	Transit .	Ashton Vale to	Temp	le Mea	ads				Bristol City Council		В	H512
Contract Ref:			Start:	28.0	5.13	Gro	und Le	evel (m	AOI	D): National Grid Co-ordinate:	Sheet:		
7	27.	<u>305</u>	End:	30.0	5.13			<u>9.74</u>		E:356037.4 N:170959.0		5	of 10
Depth (m)	No		& Testing Results	TCR	Mech SCR	RQI) If	Backfill	Water	Description of Strata	Reduced Level	Depth (Thick ness)	Materia Graphi Legend
()				100	52	21	NI 80 170			below 10.65m depth red clay becomes hard between 10.70 and 11.00m depth greenish grey sandstone and red mudstone is completley weathered with pockets of completley weathered greenish grey sandstone of extremely weak greenish grey	-	(1.10)	
11.00-12.50 11.00-11.32	5	SPT(c)	7,8/17,28,5 for 15mm N=91*	*		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	NI			very stiff very high strength reddish brown mottled greenish grey silty CLAY. (MERCIA MUDSTONE GROUP Zone IVb)	-1.26	(0.70)	x
11.45-11.65 11.45	23	D HP	c _u =>225	100	53	47	<u> </u>			at 11.65m depth band of weak greenish grey sandstone. Extremely weak thinly bedded silty MUDSTONE with occasional irregular pockets (<10mm) of extremely weak	-1.96	11.70	- x - x - x - x - x - x - x - x - x - x
12.15-12.35	24	CS					90 120 200			greenish grey fine sandstone/siltstone. Bedding is 5 to 10°. Joints are medium spaced 55 to 70° planar tight. Bedding fractures are 5 to 10° closely to medium spaced undulating rough partly open to moderately wide infilled with clay. (MERCIA MUDSTONE GROUP Zone I) at 11.85m depth joint is 55° planar tight between 11.85 and 12.20m depth occasional irregular pockets of greenish grey very weak and extremely weak fine sandstone/siltstone.	- - -	-	
12.50-14.00 12.50-12.80	6	SPT(c)	8,7/19,31 for 70mm N=103*	100	97	83	NI 80 450			from 12.05 to 12.12m depth joint is 70° planar tight. between 12.80 and 13.30m depth bedding fractures are closely spaced (80-120mm). Description on next sheet	-	-	
	oring Time	Progress	and Water Obnole Casing	servati Borel Diam	nole	Wat	er			General Remarks			

	Boring Pr	rogress and	Water Ob	servations			Ca		D area anlea		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth		Ge	nerai	Remarks		
						All dimension	ons in metres		Scale:	1:14	
Method Used:	Dynamic Rotai	sampling - ry Cored	+ Plant Used		acchio MC	Drilled By:		Logged By:	BSaimen + REWilliams	Checked By:	AGS

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 16:54 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:							Cli	ent:			Boreho	le:	
Bristol	Rapid	Transit	Ashton Vale to	Templ	e Mea	ads				Bristol City Council		В	H512
Contract Re	ef:		Start:	28.0	5.13	Grou	ınd Le	evel (m	AOD): National Grid Co-ordinate:	Sheet:		
	7273	305	End:	30.0	5.13			9.74		E:356037.4 N:170959.0		6	of 10
Depth		Samples	& Testing	_		anical		- Gill	ter		iced /el	Depth	Material
(m)	No	Type	Results	TCR (%)	SCR (%)	RQD (%)	If (mm)	Backfill	Water	Description of Strata	Reduced Level	(Thick ness)	Graphic Legend
-										at 12.82, 12.90, 13.00 and 13.70m depth bedding fracture infilled with red clay (5mm). at 13.23m depth wall rock either side of the bedding fracture further weakened to mercia mudstone group zone IVb by	-	-(3.05)	
13.60-13.9	00 25	CS		100	97	83	NI 80 450			weathering.	- - -	-	
14.00-15.5 - 14.15-14.4		CS		*			X			between 14.00 and 14.75m depth bedding fracture closely to medium spaced.	- - -	- - -	
-				100	100	100	NI 220 300			Very weak thinly to medium bedded reddish brown SILTSTONE with occasional lenticular laminations of weak greenish grey fine grained sandstone/siltstone. Bedding fractures are 5	- - -5.01	14.75	× × × × × × × × × × × × × × × × × × ×
- - 15.18-15.5 -	0 27	CS								to 15° closely to medium spaced undulating rough infilled with red clay or clean. (MERCIA MUDSTONE GROUP Zone I) between 15.15 and 15.30m depth weak greenish grey fine sandstone/pockets.	-	-(1.13)	****** ******* ******* ******* ******
15.50-16.3	0			100	69	54				Description on next sheet	-		\(\hat{x} \ha
							· '			•	•		
	Boring	Progress	s and Water Ob			Wate				General Remarks			
Date	Time	De _I	-	Borel- Diam (mn	eter n)	Dept	- 11		All d	imensions in metres Scale:	1:14		

Drilled

JG

Logged By:

BSaimen +

REWilliams

Checked

By:

GINT_LIBRARY V8_04.GLB1Log_COMPOSITE_LOG | 727305_BRISTOL_RAPID_TRANSIT.GP1 - v8_04 | 29/10/13 - 16:54 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Method Used: Dynamic sampling + Rotary Cored Plant

Used:

Comacchio MC300

27305	nsit Ashton			e Mea	ıds				Dwigtel City Commeil		R	H512
		Ct t							Bristol City Council		D	пэт
		Start:	28.0	5.13	Grou	ınd L	evel (m	AOD): National Grid Co-ordinate:	Sheet:		
	5	End:	30.0	5.13			9.74		E:356037.4 N:170959.0		7	of 10
San	nples & Tes	sting		Mecha	nical	Log	III	Ħ		sed el	Depth	Materia
No Ty	pe Re	esults	TCR (%)	SCR (%)	RQD (%)	If (mm	Backfill	Water	Description of Strata	Reduced Level	(Thick ness)	Graphi Legen
29 C	es es		100	90	54	NI 220 300 NI NI 1000 2500 350 NI 1000 2500 NI 1000			mercia mudstone group zone IVb. Weak very thinly to medium bedded reddish brown and dark brown fine to coarse SANDSTONE. Bedding fractures are 5 to 10° closely medium spaced undulating rough open infilled with red sandy clay to 2mm. (MERCIA MUDSTONE GROUP Zone I) between 15.88 and 16.00m depth sandstone is dark brown between 16.10 and 16.20m depth non intact between 16.15 and 16.60m depth sandstone becomes conglomeratic contains bands of subrounded fine to coarse gravel of sandstone along the bedding direction between 16.20 and 16.65m depth very closely to closely spaced joints dipping between 60 and 70° undulating rough clean. Very weak thickly laminated to thinly bedded reddish brown fine SANDSTONE with frequent lenticular/irregular laminations or pockets (<5mm) of greenish grey fine to medium sandstone. Bedding fractures are 5 to 15° closely to medium spaced undulating rough open infilled with red sandy clay. (MERCIA MUDSTONE GROUP Zone I) between 16.70 and 17.15m depth some irregular pockets <5mm of weak greenish grey sandstone. Extremely weak thinly to medium bedded reddish brown silty MUDSTONE. (MERCIA MUDSTONE GROUP Zone I) at 17.50m depth mudstone on either side of the bedding fractures is weakened due to continued weathering along the fracture at 17.60m depth non intact (possible	-	(0.42)	
32 C	CS		90	90	90	100 180 500			between 17.80 and 19.30m depth bedding fracture are 10 to 25° closely to medium spaced planar rough/undulating rough infilled with reddish brown clay at 17.97 and 18.52m depth bedding fracture are 25° infilled with reddish brown silty clay	-	- -	
	29 C	29 CS 30 CS 31 CS	29 CS 30 CS 31 CS	28 CS	28 CS	28 CS	28 CS	28 CS	28 CS	220 300 300 300 300 300 300 300 300 300	220 300 300 300 300 300 300 300 300 300	220 300

a constant		Boring Pr	ogress and	Water Ob	servations				Ca	noro1	Remarks		
Stot. Tile	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth				IICI ai	Kemarks		
- 2011													
Treat O													
HIS LUG,													
<u>ر</u>								All dimension	ons in metres	S	Scale:	1:14	
Structure	Method Used:	Dynamic Rotai	sampling - y Cored	+ Plan Use		acchio MC	300	Drilled By:	JG	Logged By:	BSaimen + REWilliams	Checked By:	AGS

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 16:54 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Post-principal Rapid Transis Ashton Vale to Temple Ment Start 28,05,13 Strong Level (m ADD) National Grid Co-ordinate Sheet Start 28,05,13 Strong Level (m ADD) Start St
19.15 33 CS 100 90 90 90 100 1
Depth (m) No Type Results TCR SCR ROD If If ROD If SCR ROD If If ROD If If ROD If If If If If If If I
19.15 33 CS 19.30-20.50 19.35-19.45 34 CS 19.16 CS 19.17 CS 19.18 CS 19.19 CS 19.10 CS 19
19.15 33 CS 19.30-20.50 19.35-19.45 34 CS 19.30-20.50 20.20 20 20 20 20 20.2
. 100 87 60

	Boring Pr	rogress and	Water Ob	servations				Ca	n orol	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	nerar	Remarks		
							All dimension	ons in metres	S	Scale:	1:14	
Method Used:	Dynamic Rotai	sampling - ry Cored	Plant Used		acchio MC	300	Drilled By:	JG	Logged By:	BSaimen + REWilliams	Checked By:	AGS

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 16:54 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Depth	273	Transit .	Ashto	on Vale to	Temp	la Mar					D : 4 1 C : 4 C : 3		n	TTEAA
Depth						ie iviea	ads				Bristol City Council		В	H512
Depth				Start:	28.0	5.13	Grou	ınd Le	evel (m	AOI	0): National Grid Co-ordinate:	Sheet:		
		05		End:	30.0	5.13			9.74		E:356037.4 N:170959.0		9	of 10
		Samples	s & T	esting		Mech			fill	er		ced	Depth	Materi
	No	Туре	F	Results	TCR (%)	SCR	RQD (%)		Backfill	Water	Description of Strata	Reduced Level	(Thick ness)	Graph Legen
		71			(70)	(70)	(70)	(111111)				-11.11	20.85	
21.10-21.25	36	CS			100	87	60	NI 70 170			Weak thinly laminated grey partially weathered SILTSTONE with occasional randomly orientated laminations of coal. Bedding fractures are 20 to 30° very closely to closely spaced undulating rough infilled with grey fine to medium gravel/greenish brown clay up to 4mm. (Partially weathered COAL MEASURES) between 20.85 and 20.95m depth grey mudstone gravel embedded in extremely weak red sandstone (possible conglomerate indicates an unconformity on the depositional history). between 20.95 and 21.05m depth siltstone is extremely weak. between 20.95 and 22.45m depth siltstone weathered and disintergrated along randomly orientated coal laminations. at 21.05 and 21.12m depth bedding fracture infilled with greyish brown clay up to 3mm.	-	(1.60)	X X X X X X X X X X X X X X X X X X X
22.00-23.50					*						between 21.40 and 21.56m depth joint is formed along the coal laminations and dips 85° infilled with reddish brown clay between 21.56 and 21.83m depth joint is vertical between 21.90 and 22.00m depth siltstone becomes extremely weak. between 22.30 and 22.45m depth siltstone is extremely weak to very weak.		22.45	× × × × × × × × × × × × × × × × × × ×
23.20-23.30	37	CS			100	80	60	NI 100 160			25° infilled with fine to medium gravel of siltstone. Very weak/extremely weak thinly laminated grey partially weathered SILTSTONE with occasional randomly orientated laminations of coal. (Partially weathered COAL MEASURES) between 22.45 and 23.80m depth siltstone weakened and displaced along randomly orientated coal laminations. between 22.50 and 22.90m depth siltstone recovered as fine to coarse subrounded siltstone embedded is grey clay matrix (Possible conglomerate) between 22.60 and 22.80m depth weathering penetrates downward along randomly orientated laminations of coal causing further loss of strength. between 23.00 and 23.20m depth	-	(1.45)	x x x x x x x x x x x x x x x x x x x
Boi	ring .	Progress		Water Obs	Borel	nole	Wate	r	<i>\$(/////</i>		siltstone is very weak/extremely weak and General Remarks	1	L	1X X X
Date T	ime	Dep		Depth	Diam (mr	eter	Dept	- 11						

GINT_LIBRARY V8_04.GLB1Log_COMPOSITE_LOG | 727305_BRISTOL_RAPID_TRANSIT.GP1 - v8_04 | 29/10/13 - 16:54 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Date Time Borehole Casing Depth Dept

Contract:								Cli	ent:								Boreho		
Bristol R		Transit											ity Co					H512	
Contract Ref:				Start:	28.0	5.13	Grou		evel (m	AOI)):		l Grid Co-				Sheet:		
7	273			End:	30.0	5.13			9.74			E:3	<u>56037.</u>	4 N:1	<u>70959</u>	.0		10	of 10
Depth (m)	No	Sample: Type	s & Testin			Mecha SCR (%)	RQD		Backfill	Water		D	escription	n of Stra	ta		Reduced Level	Depth (Thick ness)	
23.50-25.00					100	80	60	NI 100 160			silts	one is very een 23.2	een 23.20 ery weak. 20 and 23 very close	3.50m de	epth bed			-	× × × × × × × × × × × × × × × × × × ×
23.90		НР	c _u =87	/112	100	42	10	*			Ver to d	h open n. weak t estructur o 15°.	85m dept infilled v o extremed MUD	vith grey ely weak OSTONE.	grey hig Beddin	ghly	- -14.16 - -	23.90	× × × × × × × × × × × × × × × × × × ×
24.60-24.78	38	CS			100	43	18	NI 100 150			vitre \(\frac{15^\circ}{\text{Nea}}\) Wea blac SIL' lami (Par	between ous extrements and restrones out and restrones out ally wes	with	d 24.58m ak coal b rong thin partially occas	depth by depth by laming weather weather sional	lack ag at ated ered thin	- - -14.86	(0.40)	* * * * * * * * * * * * * * * * * * *
											med \silts	ium stroi . betwe one non	ng. een 24.90) and 25	5.00m de		-15.26	25.00	× × × × × × × × × × × × × × × × × × ×
																	-	-	
																	-	-	

	Boring Pr	rogress and	Water Ob	servations				Ca	n orol	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	ilerai .	Kemarks		
		T.	P -	, ,	r.							
										Γ		
							All dimension	ons in metres	S	Scale:	1:14	
Method Used:						300	Drilled By:	JG	Logged By:	BSaimen + REWilliams	Checked By:	AGS

GINT LIBRARY V8 04.GLBiLog COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 16:54 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Contract:							Cli	ent:				Boreho		
		Transit	Ashton		Temple M			Bristol City Council					H513	
Contract Ref				Start:	03.12.1	- 1			AOL)):	National Grid Co-ordinate:	Sheet:		
	273			End:	11.12.1			8.22			E:356064.2 N:170941.4		1	of 10
Depth (m)	No	Samples		sting esults	TCR SC (%) (%	hanical R RQE	Log	Backfill & Instru- mentation	Water		Description of Strata	Reduced	Depth (Thick ness)	
0.10-0.30	1	В			(76) (76) (/ 0)				sand	DE GROUND: Soft friable brown y clayey TOPSOIL. DE GROUND)	- 8	(0.30)	
0.30-0.50	2	В								sand	DE GROUND: Soft brown gravelly y CLAY. Gravel is angular to ngular fine to coarse of limestone and	7.92	(0.30)	
0.50	3	ES								occasional brick. (MADE GROUND) at 0.40m depth boulder ~0.35m		7.62	0.60	
0.60-1.00	4	В								MAI sligh suba brick	neter of limestone. DE GROUND: Firm light brown the gravelly sandy CLAY. Gravel is ngular to subrounded fine to coarse of and limestone. DE GROUND)	-	-	
1.00 1.00-2.00 1.20-1.65	5 7	ES B	7,3/. N	2,3,3,4 I=12						conc	. at 1.10 to 1.25m depth layers of rete recovered as boulders up to 0.30m leter.	-	_(1.00)	
			14-1							conc	. at 1.40 to 1.60m depth layers of rete recovered as boulders up to 0.30m neter.	6.62	1.60	
2.00-2.45 2.00-2.50 2.00	8 10 9	SPT B ES	1,2/ !	2,2,2,3 N=9						(AL	brown slightly sandy CLAY. LUVIUM) . from 2.00m depth becomes locally laminated with thin laminae of silty	-	-	
2.50-3.00	11	В								 coar	at 2.50m depth becomes soft to firm se gravel-cobble size pockets.	-	(1.80)	

ž		Boring Pr	ogress and	Wate	er Obs	servations		Chisel	lling / Slow	Progress	General Remarks					
ol: The	Date	Time	Borehole Depth	Cas	ا ت	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General Kemarks					
l Office - Brist	04/12/12 04/12/12 05/12/12	13:00 14:30 08:40	6.00 7.50 9.50	3 6 8.9	30 50 90	(mm) 150 150 150	5.70 7.50 2.55	1.00	1.50	01:00	2. Concrete obstruction at 1.10 and 1.4 3. Cable percussion from 1.20m to 12.					
Soils Ltd, Heac	07/12/12 07/12/12 10/12/12 11/12/12	08:30 08:30 08:30 08:00	12.50 12.50 12.50 20.00	12. 12.	.50 .50 .50	150 121 121 121	9.30 9.30 7.10 0.00				4. Rotary coring from 12.50m to 25.00m depth. 5. Water strike at 12.50m depth. 6. Water flush used.					
S0	11/12/12	00.00	20.00	15.	.00	121					All dimensions in metres	Scale: 1:14				
Structura	Method Used:					ando 2000 - Beretta T44		Drilled By:	AL + JP	Logged BSaimen + By: EBall	Checke By: AGS					

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 11:03 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:								Clie	ent:						Boreho	le:	
Bristol F	Rapid	Transit	Ashton V	Vale to	Гетрі	e Mea	ıds		Bristol City Council							В	H513
Contract Ref	:			Start:	03.12	2.12	Grou	ound Level (m AOD): National Grid Co-ordinate:							Sheet:		
7	7273	305		End:	11.12	2.12	.12 8			8.22 E:3560			064.2 N:170	941.4		2	of 10
Depth	h TCP		Mechanical I TCR SCR RQD (%) (%) (%) (%)			Log If	Backfill & Instru- mentation	Water		Desc	ription of Strata	ption of Strata		Depth (Thick	Material Graphic		
(m)	No	Туре	Kes	uits	(%)	(%)	(%)	(mm)	me Ba						Reduced	ness)	Legend
3.00-3.50	12	U _(UT100)	10 bl 100% re	lows ecovery						<u>2</u>					4.82		
3.50-3.70 3.50 3.50-4.00	13 14 15	D ES B								<u>1</u>	frequ of fil	soft to soft ent fine to rous peat. .UVIUM)	dark grey silty C coarse gravel size	LAY with d pockets	-	-	
4.00-4.45	16	SPT	N=	=0							peat.		n depth decrease	in fibrous	-	(1.10)	
4.50-5.00	17	В									silty	soft very CLAY. .UVIUM)	low strength br	own grey	3.72	4.50	
5.00 5.00-5.50	18 19	ES U _(UT100)	15 bl 100% re	ows ecovery											3.02	5.20	×x x x x x x

Ola		Boring Pr	ogress and	Wate	r Obs	ervations		Chisel	ling / Slow	Progress	Canaral Damarta				
111	Date	Time	Borehole		2	Borehole Diameter	Water	From	To	Duration (hh:mm)	General Remarks				
SIO	Bute	THIC	Depth	Dep	oth	(mm)	Depth	110111	10	(1111.111111)	7 SDT hammara EOLI240 2012 (E = 64 97%)				
IS Ltd, Head Otince - Dri											7. SPT hammers EQU249-2012 ($E_{\rm r}$ = 64.87%), EQU251-2012 ($E_{\rm r}$ = 72.73%) used.				
11 201											All dimensions in metres Scale: 1:14				
tructura				Plant Used:		ando 2000 + Beretta T44		Drilled By:	AL + JP	Logged BSaimen + Checke By: EBall By: AGS					

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 11:03 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:						Client:			Boreho			
Bristol R	Rapid	Transit .	Ashton Vale to					stol City Council		BH51		
Contract Ref			Start	03.12.1	2 Grou	and Level (m AC	d Level (m AOD): National Grid Co-ordinate:					
	7273	305	End:	11.12.1		8.22		E:356064.2 N:170941.4		3 of 10		
Depth (m)	No		8 & Testing Results	TCR SC (%) (%	R RQD			Description of Strata	Reduced Level	Depth Mater (Thick Graph ness) Leger		
5.50-5.70	20	D		(79)		<u> </u>	silty	n locally stiff brown mottled blue grey / CLAY. .LUVIUM)	,	(0.50)		
5.70-6.30	21	В					sub	lowish brown clayey subangular to rounded fine to coarse GRAVEL or dstone. .LUVIUM)	2.52	5.70		
6.30-6.50 6.50-7.00	22 23	B U _(UT100)	150 blows				coal	orelicts. ERCIA MUDSTONE GROUP Zone	;	6.30		
7.00-7.20	24	D							-			
7.30-7.50 7.50-8.00	25	В				2 <u>-</u>	sub	. from 7.30 to 7.50m depth angular to angular fine to coarse gravel of distone.				

	Boring P	ogress and	Water Ob	servations		Chisel	ling / Slow 1	Progress	General Remarks			
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General Kemarks			
		Берш	Бериі	(mm)	Бериі			. /				
									All dimensions in metres	Scale:	1:14	
Method Used:					ando 2000 - Beretta T44		Drilled By:	AL + JP	Logged BSaimen + By: EBall	Checke By:		AGS

GINT LIBRARY V8 04.GLB1Log COMPOSITE LOG | 727305 BRISTOL RAPID TRANSIT.GPJ - v8 04 | 29/10/13 - 11:03 | KJ. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

•																
Contract:								Cli	ent:					Boreho		
Bristol	Rapid	Transit	Ashtoi	n Vale to	Гетрю	e Mea	ıds				Bris	tol City	Council		В	H513
Contract R	ef:			Start:	03.12	2.12	Grou	nd Le	vel (m	ΑΟΓ	D):	National Gric	d Co-ordinate:	Sheet:		
	727	305		End:	11.12	2.12			8.22			E:3560	64.2 N:170941.4		4	of 10
		Sample	s & Te	_			nical l	Log	≫ _ uo					ed I		Material
Depth (m)	No			esults	TCR	SCR (%)	RQD (%)	If (mm)	Backfill & Instru- mentation	Water		Descri	ption of Strata	Reduced Level	(Thick ness)	Graphic Legend
8.00-8.45 8.00-8.90	27 28	SPT B	4,4/	/5,6,6,7 N=24				,						-	-	
- 8.90-9.50 - -	29	В								3 ≱¦:				-	(6.20)	
9.50-9.95 -	30	SPT	6,12/10 N	0,10,12,1 ⁴ N=46	4									-	-	
- 10.00-10.5 - -	50 31	В									and c	from 10.00m ccasionally r	n depth becomes very stiff andomly fissured.	-	-	
	Domin -	Dro one :	10.02.1	Water Ol-				-11	Chie	.11;	/ Class	Drograss				
I	Doring			Water Obs Casing	Boreho	ole	Water	-	Cnise	:iiing		Progress Duration	General	Rema	ırks	
Date	Time	Dei		Depth	Diame (mm	eter l	Depth		From		To	(hh:mm)				

	Boring Pi	ogress and	water Ob	servations		Chisei	ling / Slow	Progress		Canaral	D 010001	1-0	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)		General	Kemai	KS	
		Бери	Бериі	(11111)	Бериі		+						
									All dimer	sions in metres	Scale:	1:14	
Method		ercussion +			ando 2000 -		Drilled	AL+	Logged	BSaimen +	Checke		
Used:	Kotai	y Cored	Used	1: E	Beretta T44		By:	JP	By:	EBall	By:		AGS

Contract:								Cli	ent:						Boreh		
Bristol R		Transit	Ashton									stol City					3H513
Contract Ref	·			Start:	03.12	2.12	Grou	nd Le	evel (m	AOL)):	National Gri			Sheet:		
7	7273	<u>305</u>		End:	11.12				8.22			E:3560	64.2 N:	<u> 170941.4</u>		5	of 10
Depth (m)	No	Samples Type		ing		Mecha SCR (%)	RQD	Log If	Backfill & Instru- mentation	Water		Descr	iption of St	rata	Reduced Level	Depth (Thick ness)	Graph
10.50-11.00	32	В			(70)	(70)	(70)	(11111)	M u		gree	. from 10.50 n mottling.	0m depth o	occasional gre		-	
1.00-11.39	33	SPT	8,10/12 for 1 N=	,16,16,6 5mm 62*												- - - -	
11.50-12.50	34	В													-	- - -	
															-	- - -	
12.50-14.00 12.50-12.67 12.50-12.79	35	SPT SPT(c)	for 2 N=7 19,6/2 for 3	5/50 20mm 750* 7,38,35 55mm 162*	100	83	7	NI 70 360			grey angu gree (ME IVa) Extr med SIL	silty CLAY dar lithorelict nish grey san CRCIA MUI emely weak ium bedo	with rare as and pocked dy. DSTONE (reddish by the ded moth occasion	ottled greenis fine to coarsets (<10mm) of GROUP Zon rown thinly titled greenish greenish green	se -4.42 -		×

	Boring P	rogress and	Water Ob	servations		Chisel	ling / Slow	Progress	General	Damai	rlza	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Kema	IKS	
		Бериі	Бериі	(11111)	Бериі							
									All dimensions in metres	Scale:	1:14	
Method Used:		ercussion + ry Cored	Plant Used		ando 2000 - Beretta T44		Drilled By:	AL + JP	Logged BSaimen + By: EBall	Checke By:		AGS

Contract:							C	lient:			Boreho	ole:	
Bristol Ra	apid	Transit	Ashton Vale to	Templ	le Mea	ads				Bristol City Council		В	H513
Contract Ref:			Start:	03.1	2.12	Gro	und L	evel (m	AOD): National Grid Co-ordinate:	Sheet:		
7	27 3	305	End:	11.1				8.22		E:356064.2 N:170941.4		6	of 10
Depth (m)	No	Samples Type	& Testing Results	TCR	Mech	anical RQE	Log	Backfill & Instru- mentation	Water	Description of Strata	Reduced Level	Depth (Thick ness)	Materia Graphic Legend
` ′	36	CS	results	100	83	7	NI 70 360			siltstone. Fractures are 5 to 10° closely to medium spaced undulating rough infilled with reddish brown clay. (MERCIA MUDSTONE GROUP Zone I) between 13.23 and 13.28m depth very stiff reddish brown clay formed by the complete weathering of extremely weak siltstone. between 13.30 and 13.50m depth irregular or lenticular shaped greenish grey completley weathered fine sandstone and extremely weak fine mudstone with	<u>≃</u> 	(0.86)	× × × × × × × × × × × × × × × × × × ×
13.60-13.78	37	CS		V	*	*	-			extremely weak fine mudstone with extremely weak reddish brown siltstone. Very weak locally extremely weak reddish brown thinly to medium bedded SILTSTONE with rare greenish grey lenticular/irregular shaped very weak greenish grey fine sandstone or siltstone. Bedding fractures are 5 to 10° closely to medium spaced undulating rough partly open/open infilled with reddish brown clay. (MERCIA MUDSTONE GROUP Zone I)	- - -	-	**************************************
14.65-14.80	38	CS		100	100	80	60 280 350			at 14.17, 14.45, 14.54 and 14.90m depth bedding fractures are 5 to 10° undulating rough open infilled with some reddish brown clay.		(2.00)	× × × × × × × × × × × × × × × × × × ×
15.40-15.50	39	CS								at 15.00 and 15.07m depth siltstone is locally extremely weak between 15.10 and 15.22m depth rare lenticular and irregular greenish grey very weak siltstone between 15.22 and 15.50m depth siltstone is extremely weak at 15.30 and 15.38m depth bedding fractures are 5° undulating rough partly open.		-	× × × × × × × × × × × × × × × × × × ×
15.50-17.00				80	80	80	1			Extremely weak reddish brown thinly to	-1.28	15.50	× × × × × × × × ×

	Boring Pr	rogress and	Water Ob	servations		Chisel	ling / Slow 1	Progress	Canaral	Damas	alea	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Kemai	IKS	
		Depui	Depui	(mm)	Deptii			<u> </u>				
									All dimensions in metres	Scale:	1:14	
Method	Cable P	ercussion +	Plan	t D:	ando 2000 -	+	Drilled	AL+	Logged BSaimen +	Checke		
Used:	Rotai	y Cored	Use	d: B	Beretta T44		By:	JP	By: EBall	By:		AGS

Contract:						C	Client:			Boreho		
	oid Transit	Ashton Vale to				\perp			Bristol City Council			BH51
Contract Ref:		Start:	03.12	.12	Gro	und I	Level (m	AOD		Sheet:		
72	7305	End:	11.12				8.22		E:356064.2 N:170941.4			of 1
Depth (m) N	Sample Type	Results	TCR		RQE	Log O If	Backfill & Instru-mentation	Water	Description of Strata	Reduced Level	Depth (Thick ness)	
	90 CS		80	80	80	NI 255 355	I O		5 to 10°. Bedding fracture 5 to 10° closel to medium spaced undulating rough open infilled with reddish brown clay. (MERCIA MUDSTONE GROUP Zone I) at 15.50 and 15.80m depth possibl loss of recovery.	-	(2.00)	
			100	93	85	400 900 2550)	_	between 17.30 and 17.38m depth no intact recovered as fine to coarse gravel of siltstone (possibly weathered and not intact). Very weak reddish brown thinly to medium bedded SILTSTONE. Bedding fracture are 5 to 10° closely to medium space undulating rough infilled with reddish brown clay/smears of clay. (MERCIA MUDSTONE GROUP Zone I) at 17.50m depth greenish grelenticular very weak siltstone up to 15mm.	-9.28	17.50	**************************************

	.uk.
	soils.co
	: ask@
	Email:
	.co.uk,
	w.soils
	eb: ww
	04, W
	-947-1(
Ξ.	:: 0117
03 KJ	 Fax
3 - 11:	47-100
9/10/1	1117-9
04 2	Tel: 0
9y - V8	S3 4EB. Te
SIT.GI	ol, BS
TRAN	r, Brist
APID	Iminste
OL R	ne, Bec
BRIST	use La
7305	Stillhor
JG 72	chool,
ITE L	S PIO
MPOS	ol: The
Log CC	- Brist
GLBIL	Office
8	, Head
\RY	ils Ltd,
LIBRA	tural So
GINT	Structi

	Dornig 11	ogress and	water ob	oci vations		CITISCI	ilig / blow	11051033	Canaral	Damar	1-0	- 1
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Keman	KS	
									All dimensions in metres	Scale:	1:14	
Method Used:		ercussion + y Cored	Plant Used		ando 2000 - Beretta T44		Drilled By:	AL + JP	Logged BSaimen + By: EBall	Checke By:		AGS

Contract:							C	lient:				Boreho		
Bristol F	apid	Transit	Ashton Vale to	Templ	e Mea					Bristol City			B	BH513
Contract Ref	:		Start:	03.1	2.12	Grou	ınd L	evel (m	AOD): National Gri	d Co-ordinate:	Sheet:		
	7273	305	End:	11.1				8.22		E:3560	064.2 N:170941.4		8	of 10
Depth (m)	No	_ <u> </u>	s & Testing Results		Mecha SCR (%)	anical RQD	Log If	Backfill & Instru- mentation	Water	Descr	iption of Strata	Reduced Level	Depth (Thick ness)	
18.30-18.40 18.50-20.00		CS		100	93	85	40 90 250					-	(1.55)	X X X X X X X X X X X X X X X X X X X
19.70-19.75	42	CS		87	67	33	NI 90			extremely weak. below 19.00m d fine to coarse fragments of conglomerate). Extremely weak closely fissured partially weathers is 5 to 15°. Fraspaced undulati angular gravel of (Partially weather between 19 intact recovered grey and red mud Very weak thinl weathered MUE dark grey plant for Fractures are c	red COAL MEASURES) .30 and 19.50m depth non as fine to coarse gravel of listone. y laminated grey partially DSTONE with occasional ossils. bedding is 5 to 15°. losely to closely spaced	-11.28	(0.45)	X X X X X X X X X X X X X X X X X X X
20.00-21.00				80	75	57	170			gravel of grey m. (Partially weather at 19.55 a fracture dipping a at 19.80 and undulating rough between 19 intact recovered grey mudstone between fractures are existed between bedding dips at 1	red COAL MEASURES) nd 19.67m depth bedding at 50°. 1 19.85m depth joint is 75° open85 and 20.00m depth non as fine to coarse gravel of 20.00 and 20.60m depth tremely closely to closely 20.00 and 21.00m depth 5°60 and 20.85m depth non	-	-	

		Boring Pr	ogress and	Water Ob	servations		Chisel	ling / Slow l	Progress	Canaral	D 012201	1.0	
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Kemai	KS	
ł			Берш	Бериі	(mm)	Берш		+	<u> </u>				
										All dimensions in metres	Scale:	1:14	
	Method Used:		ercussion + y Cored	Plant Usec		ando 2000 - Seretta T44		Drilled By:	AL + JP	Logged BSaimen + By: EBall	Checke By:		AGS

					Client:			Boreho	
Bristol Rap	pid Transi	t Ashton Vale to	•				Bristol City Council		BH51
Contract Ref:		Start:	03.12.12	Grou	nd Level (m	AOI	D): National Grid Co-ordinate:	Sheet:	
72	27305	End:			8.22		E:356064.2 N:170941.4		9 of 10
Depth (m) N	Sampl No Type	es & Testing Results	TCR SCR	anical l RQD (%)	Backfill & Backfill wm) Instru-	Water	Description of Strata	Reduced	Depth Mater (Thick Graph ness) Leger
20.85-21.00	43 CS		80 75	57			at 20.85m depth joint is 60° partly open.	-	-
21.00-22.50				*			between 21.00 and 21.60m depth possibly loss of recovery.	-	-
22.00-22.10	44 CS		60 35	10	NI 90		at 21.60 and 21.65m depth extremely weak mudstone at 21.67 and 21.69m depth band of black extremely weak coal dipping at 40° at 21.74m depth joint dips at 50° undulating rough open with red smears of clay at 21.85m depth bedding fracture is 15° undulating rough with brown staining at 21.90m depth joint dips at 60° with non intact wall rock.	-	(4.50)
22.50-24.00			V	¥	170		at 22.23 and 22.28m depth non intact. at 22.35 and 22.50m depth highly weathered mudstone recovered as fine grey gravelly clay. between 22.50 and 22.80m depth possible loss of recovery.	-	-
			80 67	17				-	-
23.35-23.50	45 CS							-	-

					i				T			
	Boring Pi	ogress and	Water Ob	servations		Chisell	ing / Slow 1	Progress	Canaral	D 012201	1.0	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Kemai	KS	
		Бериг	Deptin	(11111)	Deptii							
									A 11 11 11 11 11 11 11 11 11 11 11 11 11	C1	1 1 1	
						L			All dimensions in metres	Scale:	<u>1:14</u>	
Method Used:		ercussion + ry Cored	Plan Used		ando 2000 - Beretta T44		Drilled Bv:	AL + JP	Logged BSaimen + By: EBall	Checke By:		AGS

Contract:						Client:			Boreho	ole:	
	apid	Transit	Ashton Vale to	Femple Mea	ıds			Bristol City Council		BH	513
Contract Ref:						d Level (m A			Sheet:		
7	273	305	End:	11.12.12		8.22		E:356064.2 N:170941.4		10 of	10
Depth		Samples	s & Testing	Mecha TCR SCR	anical L	Backfill & Bow	Water	Description of Strata	Reduced		ateria raphic
(m)	No	Туре	Results	(%) (%)	(%) (i	mm) Back III	≥	Description of Strata	Red	ness) Le	egend
				80 67	17	NI 90 170		at 23.50, 23.60. 23.70 and 23.78m depth fractures undulating rough infilled with fine to coarse crushed mudstone fragments.	- -	-	
24.00-25.00				X X		*		at 23.90m depth sigmoidal veins of calcite dipping at 60°. Extremely weak to very weak thinly laminated grey partially weathered MUDSTONE with occasional plant fossils	-15.78	24.00	
				90 80	80	NI 180		and thin bands of black coal. Fractures are closely to medium spaced. Bedding is 15°. (Partially weathered COAL MEASURES) between 24.00 and 24.20m depth non intact recovered as fine to coarse extremely weak grey mudstone at 24.00 and 24.65m depth mudstone is extremely weak.	-	(1.00)	
24.70-25.00	46	CS				350		at 24.55m depth thin band of coal (20mm) dipping at 40° between 24.60 and 25.00m depth occasional incipient fractures below 24.65m depth becomes very weak.	- -	-	
				$ \downarrow \downarrow$	$ \downarrow $			at 24.85m depth calcite (2mm) veins running at $65^{\circ}.$	-16.78	25.00	
•								Borehole terminated at 25.00m depth.	_	-	
									-	-	
									-	-	
									-	-	
									-	-	
									-		
									-		
									Ī		

		Boring Pr	ogress and	Water Ob	servations		Chisel	ling / Slow	Progress	General	Dama	-1	
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh;mm)	General	Kema	IKS	
-			Depth	Depth	(mm)	Depth		+	, ,				
-													
										All dimensions in metres	Scale:	1:14	
	Method Used:		ercussion + y Cored	Plant Used		ando 2000 - Beretta T44		Drilled By:	AL + JP	Logged BSaimen + By: EBall	Checke By:		AGS

Contract:						Cli	ent:			Boreho	ole:	
Bristol F	Rapid	Transit	Ashton Vale to	Temple M	eads				Bristol City Council		В	H514
Contract Ref	f:		Start:	02.12.12	2 Gro	ound Le	evel (m	AOI	D): National Grid Co-ordinate:	Sheet:		
,	7273	305	End:	05.12.12	2		7.20		E:356087.3 N:170934.2		1	of 10
Depth (m)	No		s & Testing Results	TCR SCI	hanica) If	Backfill	Water	Description of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
-		- 77		(%) (%) (%)	(mm)			MADE GROUND: Grass over TOPSOIL consisting of soft brown slightly gravelly sandy CLAY. Gravel is angular to subangular fine to coarse of limestone and sandstone.	-	(0.30)	
0.50 0.50	1 2	B ES							(MADE GROUND) MADE GROUND: Black gravelly sandy friable CLAY. Gravel is subangular to subrounded fine to coarse of limestone, brick, occasional clinker and occasional sandstone. (MADE GROUND)	6.90	(0.40)	
-									from 0.60m to 0.70m depth 2 No. cobble of limestone ~0.25m diameter. Firm greyish black slightly sandy CLAY.	6.50	0.70	
-										6.30	0.20)	
									Firm to stiff reddish brown sandy CLAY locally friable.	6.20	1.00	
1.00-2.50 - 1.00 1.00 - 1.00-1.65	3 4 5	U _(UT100) B ES B	18 blows 100% recovery						Firm medium strength orange brown mottled grey slightly sandy CLAY. (ALLUVIUM)	-	-(0.65)	
1.50		НР	c _u =65/65/60								- 1.65	
1.70-2.04 1.70	6	U HP	100% recovery c _u =37/40/37						Soft very low strength orange brown mottled grey slightly sandy CLAY with occasional pockets (<0.3mm) brown silt. (ALLUVIUM)	5.55	1.65	
2.04-2.20 - 2.04	7	D HP	c _u =35/35					₹		- - -	(0.60)	
2.25-2.50 2.25	8	B HP	c _u =30/30						Soft low strength grey slightly sandy organic CLAY with occasional brown pseudo-fibrous peat and rare brown fibrous peat remains and rare pockets (<5mm) of brown silt.	4.95	2.25	**************************************

	Boring Pr	ogress and	Water Obs	servations	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth
03/12/12 04/12/12 05/12/12 05/12/12	09:00 17:00	2.10 4.00 8.00 8.00	None None 8.00 8.00	121 121 121 121	2.10 0.00 0.00 1.90

GINT_LIBRARY V8_04.GLB1Log_COMPOSITE_LOG | 727305_BRISTOL_RAPID_TRANSIT.GP1 - v8_04 | 29/10/13 - 11:03 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

General Remarks

- 1. Location CAT scanned prior to drilling and inspection pit dug to 1.20m depth. 2. Dynamic sampling from 1.20m to 8.00m depth. 3. Rotary coring from 8.00m to 22.80m depth. 4. Water strike at 2.10m depth. 5. Water flush used. 6. SPT hammer EQU083-2012 ($E_{\rm r}=63.54\%$) used.

				1	All dimens	ions in metre	S	Scale:	1:14
Method Used:	sampling y Cored	+ Plant Used	acchio MC	300	Drilled By:	LH	Logged By:	BSaimen + EBall	Checke By:

•													_	· · · · · ·			
Contract:									Clie	ent:					Boreho	le:	
Bristol	Rapid	d Tran	sit A	shton V	ale to	Гетрі	e Mea	nds				Bris	stol City Cour	ıcil		В	H514
Contract R	ef:				Start:	02.12	2.12	Grou	nd Le	vel (m	AOL	D):	National Grid Co-or	dinate:	Sheet:		
	727	305			End:	05.12	2.12		,	7.20			E:356087.3	N:170934.2		2	of 10
		Sam	oles &	& Testii	ng	l l	Mecha	anical l	Log	Ξ	r				ed 1	Depth	Material
Depth (m)	No			Resu	ılts		SCR	RQD (%)	If	Backfill	Water		Description of	of Strata	Reduced Level	(Thick ness)	Graphic Legend
2.50-4.00		U _{(UT}	000) 1	11 blo 00% re	ows covery							·	LUVIUM) . at 2.45m depth properties.	pocket (20mm) of	-	-(0.75) -	##
3.10-3.50	9	U _{(W}	S) 1	00% re	covery							orga fibro	very low strength g nic CLAY with ous and pseudo-fibrou LUVIUM)	occasional brown	4.20	3.00	**************************************
3.50-4.00 3.50	10	B		c _u =22	2/22										-	(1.00)	
4.00-5.50		U _{(UT}	.00)	38 bk 0% reco								with fibro	greenish grey slig occasional brown p ous peat. LUVIUM)	htly sandy CLAY pseudo-fibrous and	3.20	4.00	
4.50-4.90		В													-	(0.90)	
4.90-5.50		В										Stiff grav	reddish and orangelly slightly silty CL	ge brown slightly AY.	2.30	4.90	xoxo
		_				•											
	Borin			and Wa					\parallel				Ganara	l Remarks			
Date	Tim		oreho Deptl		nsing epth	Boreh Diame (mm	eter	Wate Deptl	- 11				UCIICIA	1 IXTIIIAIKS			

)		Boring Pi	rogress and	water O	oservations				C_{α}	maral	Remarks		
Stol: The	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	nerar	Kemarks		
з гта, неаа Отпсе - Бп													
100011								All dimension	ons in metre	S	Scale:	1:14	
tructura	Method Used:		sampling - ry Cored	+ Plar Use		acchio MC	2300	Drilled By:	LH	Logged By:	BSaimen + EBall	Checke By:	AGS

Contract:						C	Clier	nt:				Boreho		
Bristol	Rapid	Transit	Ashton Vale	to Temple	Mea	ds				Bris	stol City Council		В	H514
Contract Re	ef:		Sta	rt: 02.12	.12	Ground	Lev	el (m	AOE)):	National Grid Co-ordinate:	Sheet:		
	727	305	En	d: 05.12	.12		7	.20			E:356087.3 N:170934.2		3	of 10
	T		s & Testing			nical Log						70	1	Material
Depth (m)	No		Results	TCR	SCR	RQD In (%) (mi	f	Backfill	Water		Description of Strata	Reduced Level	Depth (Thick ness)	
-										coar	vel is subrounded to rounded fine to se of flint. LUVIUM)	-	(0.60)	* - x 2 - x 2 - x 2 - x - x - x
-			2011									1.70	5.50	X X
5.50-7.00		U _(UT100)	28 blow: 0% recove							silty pock extre comp sand (ME	RCIA MUDSTONE GROUP Zone	-	-	*x x x x x
6.10		НР	c _u =>200							extre pock fine	between 6.20 to 6.60m depth emely to very closely spaced lenticular cets of greenish grey extremely weak sandstone/siltstone and pockets of pletely weathered sandstone.	-	-	X X X X X X X X X X X X X X X X X X X
7.00		НР	c _u =>200							sand	. at 7.00m depth rare pockets of pletely weathered greenish grey fine stone/siltstone. below 7.00m depth clay is fissured.	-	-	
]	Boring	Progres Bore	s and Water	- D 1		Water					General Remarks			
Date	Time		oth Dont	¹⁵ Diame		Donth	1							

									/////						 <u> </u>
	Boring 1	Progress ar	nd Wate	er Obse	rvatio	ns					Ca		D ama aml ra		
Date	Time	Borehol	le Cas		Boreho Diamet		Water				Ge	nerai	Remarks		
Date	THIC	Depth	Dep	oth	(mm)		Depth	╝							
										11 dimension	i		G1	1.14	
								Ш		Il dimension	ns in metres	3	Scale:	1:14	_
Method Used:	Dynam	ic sampling ary Cored	ıg +	Plant Used:	C	om	acchio M	C30		Drilled By:	LH	Logged By:	BSaimen + EBall	Checke By:	AC
Oscu.	Kot	ary Coreu		Oscu.	C	OIII	accino M	C30	,	Dy.	LII	Бу.	EDAII	Dy.	147

Bristol Rapid Transit Authon Vale to Temple Meads	0-												<u>'</u>	BUKLII			
Sumple & Testing Sheet Sheet Type Start Q2,12,12 Ground Level (m AOD) National Grid Co-ordinate: Sheet Type Start Sheet Type Start Sheet Type Start Sheet Type Start Start Type Start Sheet Type Start Start Start Type Start Start Type Type Type Start Type Ty	Contract:								Cli	ient:		ъ.	4 164 6	. 9	Boreho		TT#1.
No Type Results Test CR SCR RQD If RQ			Transit						11	1 (4.01				C14.	В	3H31 ²
Depth (rm) No Type Results TCR SCR ROD			205					Grou			AOI	ו י(עוי:			Sneet:	4	. 10
Round HP		121.			d:			<u> </u>					E:356087.3	8 N:170934.2	<u> </u>	4	of 10
Round 11 U_{Officino} O% recovery	Depth		Sample	s & Testing						kfill	ater		Description	of Strata	uced	Depth	Materi Graph
7. 60-8.00		No	Type	Results		(%)	(%)	(%)	lf (mm)	Bac	× ×		Description	oi Sirata	Red	ness)	Leger
8.00-9.50 Solid content of the co	7.50		HP	c _u =>200)												<u>×_</u>
8.00-9.50 Solid content of the co	7.60.8.00	11	T T	09/- ragova	MT 7										}	-	<u>×</u> _
Solution Section Sec	7.00-8.00	111	U(UT100)	0 / 0 TECOVE	1 y												<u> </u>
Solution Section Sec																_	×
Solution Section Sec															}	-	<u>*</u> _×
Solution Section Sec																	<u>×</u>
Solution Section Sec																	×
Solution Section Sec	8.00-9.50						A					١	. at 8.00m depth	clav is very closely	-	-	<u></u> _
8.90 HP c _u =>200 Spt 1,00 0 0 0 0 0 0 0 0 0												fissu	red.			_	<u>×</u> _
8.90 HP c _u =>200 Spt 1,00 0 0 0 0 0 0 0 0 0												very	stiff and greenish	grey pockets of fine			×
8.90 HP c _n =>200 SPT 2,3/7,8,13,15												sand	stone and weak sar	nd.	-	<u> </u>	<u>*</u>
8.90 HP c _u =>200 100 0 0															-	-	<u>× </u>
8.90 HP c _n =>200 SPT 2,3/7,8,13,15																	<u>× </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															†	(5.85)	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															-	-	<u>×</u>
8.90																	×
8.90															Ī	-	<u>×</u> _
8.90															}	-	<u>x</u>
9.50-11.00 9.50-9.95 1 SPT 2,3/7,8,13,15 N=43 c_u=>225 100 0 0 Boring Progress and Water Observations Date Time Borchole Depth Depth Depth Depth Depth General Remarks General Remarks						100	0	0									<u>x</u>
9.50-11.00 9.50-9.95 1 SPT 2,3/7,8,13,15 N=43 c_u=>225 100 0 0 Boring Progress and Water Observations Date Time Borehole Depth Depth Depth Depth General Remarks General Remarks																	<u></u>
9.50-11.00 9.50-9.95 1 SPT 2,3/7,8,13,15 N=43 c_u=>225 100 0 0 Boring Progress and Water Observations Date Time Borchole Depth Depth Depth Depth Depth General Remarks General Remarks	8 90		HP	c.=>200)										}	-	×
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.70		111	Ou - 200	,												<u></u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															}	-	<u>× </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															1	_	<u>×</u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	×
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															1	-	×
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															}	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						↓	↓	↓									<u>× </u>
Boring Progress and Water Observations Date Time Borehole Casing Depth Depth Depth Depth Depth Grant Depth	9.50-11.00		CDT	2 2/7 0 12	1.5	1	1	1									<u> </u>
Boring Progress and Water Observations Date Time Borehole Depth Depth Depth Depth Depth Gmm) Boring Progress and Water Observations General Remarks General Remarks		1	SPI	N=43											}	-	×
Boring Progress and Water Observations Date Time Borehole Depth Depth Depth Depth General Remarks General Remarks General Remarks	9.50		HP	$c_u = >225$,										L		<u>x</u>
Boring Progress and Water Observations Date Time Borehole Depth Depth Depth Depth General Remarks General Remarks General Remarks						100	0										×
Date Time Borehole Casing Depth Depth Depth Depth Water Obepth Depth Dep						1100		ľ							}	-	<u></u>
Date Time Borehole Casing Depth Depth Depth Water Depth Depth Depth Casing Depth Dep															_		
Date Time Borehole Casing Depth Depth Depth Depth Water Obepth Depth Dep																	×
Date Time Borehole Casing Depth Dept		1	I	<u> </u>						<u> </u>						L	⊢
Date Time Borehole Casing Depth Depth Depth Depth Depth Depth Depth Grant Gran	В	oring	Progres	s and Water	Obs								<u> </u>	al D a			
Depth Depth (mm) Depth	Date	Time				Boreh Diam	nole eter		- 11		_		Genera	ai Kemarks			
			Dej	pin Dept	n_	(mn	n)	Dept	<u>n</u>								
All dimensions in metres Scale: 1:14											Δ11 -	dimensi	ions in matros	Scalar	1.14		

Drilled

LH

By:

Logged By:

BSaimen +

EBall

Checke

By:

GINT_LIBRARY V8_04.GLB1Log_COMPOSITE_LOG | 727305_BRISTOL_RAPID_TRANSIT.GP1 - v8_04 | 29/10/13 - 11:03 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Method Used: Dynamic sampling + Rotary Cored Plant

Used:

Comacchio MC300

Contract:								Client:			Boreho		
Bristol R	apid	Transit	Ashton Vale to							Bristol City Council		В	H514
Contract Ref			Start:	02.1	2.12	? Gi	ounc	l Level (m	AOI	D): National Grid Co-ordinate:	Sheet:		
7	273	<u> 305 </u>	End:	05.1	2.12	2		7.20		E:356087.3 N:170934.2		5	of 10
Depth		1	S & Testing	TCR	Mec	R	D	ckfi JI	Water	Description of Strata	Reduced Level	(Thick	Materi Graph
(m) 10.20 10.30-10.65 11.00-12.50 11.00-11.37	12 2	Type HP CS	Results c _u =>225 2,5/11,11,78 for 70mm	100	(%		(6) (n	Baac Hall	W	below 10.60m depth clay becomes hard.	Red	ness)	Legen X X X X X X X X X X X X X X X X X X
11.00 11.45 11.70-11.88	12	HP HP CS	$N=136*$ $c_u => 225$ $c_u => 225$	100	44	33		77		Very weak reddish brown SILTSTONE with extremely closely spaced lenticular greenish grey fine sandstone/siltstone. (MERCIA MUDSTONE GROUP Zone I) Very stiff/hard reddish brown silty CLAY. (MERCIA MUDSTONE GROUP Zone IVb) Very weak reddish brown sandy SILTSTONE with extremely closely spaced lenticular greenish grey fine	-4.15 -4.25 -4.50	(0.25)	X X X X X X X X X X X X X X X X X X X
11.87 12.10-12.25	13	HP	c _u =>225					•		sandstone/siltstone. (MERCIA MUDSTONE GROUP Zone I) Very stiff/hard reddish brown silty CLAY. (MERCIA MUDSTONE GROUP Zone IVb) Extremely weak reddish brown SILTSTONE with extremely to very closely to closely spaced thinly laminated to very thin beds of greenish grey fine sandstone/siltstone. Bedding is	-4.85	(0.18)	× × × × × × × × × × × × × × × × × × ×
12.40-12.45	14	CS					- 1 :	NI 50 60		subhorizontal. (MERCIA MUDSTONE GROUP Zone I) between 12.25 to 12.30m depth extremely weak reddish brown siltstone is	_	-	

	Boring Pr	ogress and	Water Ob	servations				Ca	norol	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	ilerai .	Kemaiks		
							All dimension	ons in metres	3	Scale:	1:14	
Method Used:	Dynamic Rotai	sampling - y Cored	Plant Used		acchio MC	300	Drilled By:	LH	Logged By:	BSaimen + EBall	Checke By:	AGS

Contract:							Cli	ent:			Boreho		
Bristol R	apid	Transit	Ashton Vale to							Bristol City Council		В	H514
Contract Ref:			Start:	02.1	2.12	Gro	ınd Le	evel (m	AOI	D): National Grid Co-ordinate:	Sheet:		
7	273	<u>305</u>	End:	05.1	2.12			<u>7.20</u>		E:356087.3 N:170934.2		6	of 10
Depth (m)	No	Sample Type	s & Testing Results	TCR	Mecha SCR	RQE	If	Backfill	Water	Description of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
12.50-14.00 12.50-12.74		SPT	9,10/74,26	(%)	(%)	(%)	(mm)			fractured and non-intact. Extremely weak to very weak reddish	- 2	(0.55)	
13.00-13.30	15	CS	for 11mm N=349*	80	55	27	NI 140 270			brown fine silty SANDSTÖNE. Bedding is subhorizontal (5°). (MERCIA MUDSTONE GROUP Zone I) between 12.50 to 12.80m depth possible loss of 30cm core possibly drilling induced. Very weak reddish brown sandy SILTSTONE. Bedding fractures are 5° very closely to medium spaced undulating rough open infilled with slightly sandy clay (up to 5mm). (MERCIA MUDSTONE GROUP Zone II) between 12.85 to 13.00m depth fractures are very closely spaced. between 12.85 to 13.00m depth	-5.65	12.85	X X X X X X X X X X X X X X X X X X X
13.45-13.60	16	CS								siltstone is extremely weak between 13.30 to 13.40m depth siltstone is non-intact. Extremely weak reddish brown sandy SILTSTONE with extremely closely spaced lenticular greenish grey fine sandstone/siltstone up to 50mm. Bedding fractures are 5° undulating closely spaced infilled with silty clay (up to 5mm). (MERCIA MUDSTONE GROUP Zone II) between 13.40 to 13.62m depth	-6.20	13.40	X
13.85		НР	c _u =>225							siltstone is very weak below 13.65m depth it becomes extremely weak with weathered greenish grey siltstone/fine sandstone lenses. at 13.65m depth stiff reddish brown	-6.65 -6.80	13.85	× × × × × × × × × × × × × × × × × × ×
14.00-15.30				85	85	73	NI 250 450			silty clay up to 40mm (probably completely weathered siltstone). Very stiff becoming hard reddish brown silty CLAY. (MERCIA MUDSTONE GROUP Zone IVb) Extremely weak thinly to medium bedded reddish brown SILTSTONE with rare greenish grey pockets (<10mm) of extremely weak fine sandstone/siltstone. Bedding fractures are 5° closely to medium spaced undulating rough with reddish clay	-0.80	-	X
14.59-14.78	17	CS								(<1.5mm). (MERCIA MUDSTONE GROUP Zone I) between 14.50 and 14.70m depth rare pockets of greenish grey fine sandstone/siltstone up to 20mm.	-	-	X X X X X X X X X X X X X X X X X X X
В	oring	Progres	s and Water Ob	servati	ons					Canada Damada			

		Boring Pr	rogress and	Water Ob	servations			Co	noro1	Remarks		
J. 1110	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth		Ge	Herai	Kemarks		
relier - 2			Бериг	Бериг	(mm)	Бери						
2000												
, , , , , , , , , , , , , , , , , , ,												
CHUC							All dimension	one in matra	,	Scale:	1:14	
Mucturar	Method Used:	Dynamic Rotai	sampling - ry Cored	Plan Used		acchio MC	 Drilled By:	LH	Logged By:	BSaimen + EBall	Checke By:	AGS

Contract:							Cli	ient:			Boreho		
	oid T	ransit A	Ashton Vale to							Bristol City Council		В	3H514
Contract Ref:			Start:			Gro		evel (m	AOD		Sheet:		
72	273		End:	05.1				7.20		E:356087.3 N:170934.2		7	of 10
Depth (m)		Type Type	& Testing Results		Mecha SCR (%)	RQE		Backfill	Water	Description of Strata	Reduced Level	Depth (Thick ness)	Materi Graph Legen
15.30-16.30				85	85	73	-				-	(2.75)	X X X X X X X X X X X X X X X X X X X
				100	100	90	NI 250 450			\dots at 16.08m depth bedding fractures 5° with softened wall rock.	-	- - -	× × × × × × × × × × × × × × × × × × ×
16.30-17.50 16.55-16.80	18	CS		83	70	67	NI 190 260			Very weak reddish brown thinly to medium bedded fine silty SANDSTONE. Bedding fractures are 5 to 15° very closely to medium spaced undulating rough infilled with reddish brown sandy clay. (MERCIA MUDSTONE GROUP Zone I) between 16.75 and 16.83m depth lenticular very weak greenish grey fine to coarse sandstone at 17.03, 17.15, 17.48 and 17.63m depth bedding fractures are 5° undulating rough infilled with red sandy clay at 17.15m depth upper wall rock is extremely weak and non intact.	-9.55	16.75	x x x x x x x x x x x x x x x x x x x

	Boring P	rogress and	Water Ob	servations			Ca	noro1	D omortza		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth		Ge	nerai .	Remarks		
Method Used:	Dynamic Rota	sampling - ry Cored	+ Plant		acchio MC	All dimension Drilled By:	ons in metres	Logged By:	Scale: BSaimen + EBall	1:14 Checke By:	AGS

Samples & Testing Mechanical Log 5 5 Depth Mater Depth TCR SCR ROD 1f 5 5 Description of Strata 5 6 (Thick Graph G	100											BUREH	JLI		
Samples & Testing Samples & Testing Mechanical log E356087.3 N:170934.2 Sheet Samples & Testing Mechanical log E356087.3 N:170934.2 Sheet Samples & Testing Mechanical log E356087.3 N:170934.2 Sheet Samples & Testing Mechanical log E3607.3 N:170934.2 Sheet Samples & Testing Mechanical log E3607.3 N:170934.2 Sheet Samples & Testing Mechanical log E3607.3 N:170934.2 Sheet Samples & Testing Sa	Contract:								Cli	ent:			Boreho		
Depth (m) No Type Results Tight (Results Results Res	Bristol R	apid '	Transit	Ashto										B	H514
Depth (n) No Type Results TCR SCR RQD [r] TCR	Contract Ref:				Start:	02.1	2.12	Grou	ınd Le	evel (m	AOI		Sheet:		
17.50-18.50 17.62-17.80 19 CS 18.10	7	27 3	<u>805</u>		End:	05.1	2.12			7.20		E:356087.3 N:170934.2	<u> </u>	8	of 10
17.50-18.50 17.62-17.80 19 CS 18.10 HP c ₁ =75/75 100 80 60 NI 190			1			TCR	SCR	RQD	If	Backfill	Water	Description of Strata	teduced Level	(Thick	Materia Graphi Legend
opened by drilling action. 100	17.50-18.50					1 1	(/6)	(76)	(11111)			between 17.45 and 17.63m depth possible vertical incipient fracture possibly	N.	11000)	
18.50-19.30 18.50-19.30 18.50-20.80 18.50-19.30 18.50	17.62-17.80	19	CS			100	80	60	190			opened by drilling action. between 17.85 and 18.10m depth becomes extremely weak.	-10.90	18.10	
Extremely weak thinly laminated greyish brown distinctly weathered fissile MUDSTONE with attenating thin beds of greyish brown fine clay. (Distinctly weathered COAL MEASURES) extremely weak to very weak thinly laminated greyish into tabular fragments of mudstone when handled. Extremely weak to very weak thinly laminated grey weathered coals. Bedding fractures are 5° extremely closely to closely spaced undulating rough infilled with grey brown clay fine to coarse gravel of mudstone. (Partially weathered COAL MEASURES) between 18.50 and 18.90m depth non lintact recovered as fine to coarse gravel of mudstone. (Partially weathered COAL MEASURES) at 19.16 method bedding fractures is 5° infilled with grey brown clay with non intact upper wall rock. Very weak thinly laminated grey distinctly weathered fissile MUDSTONE with very closely to closely spaced extremely weak thinly laminated grey friable mudstone and completely weathered mudstone and completely weathered mudstone. (Distinctly weathered COAL MEASURES) at 19.16 method and 19.75m depth extremely friable grey thinly laminated mudstone. (Distinctly weathered COAL MEASURES) at 19.60 and 19.75m depth extremely friable grey thinly laminated mudstone. (Gistinctly weathered COAL MEASURES) at 19.60 and 19.75m depth extremely friable grey thinly laminated mudstone. (Distinctly weathered COAL MEASURES) at 19.60 and 19.75m depth extremely friable grey thinly laminated mudstone.			HP	Cu	=75/75				30			fissile distinctly weathered MUDSTONE. Bedding is 5°. (Distinctly weathered COAL MEASURES) between 18.10 and 18.17m depth mudstone is completley weathered into firm brownish grey clay between 18.17 and 18.33m depth mudstone is extremely weak and crumbles		-(0.23) -18.33	
Boring Progress and Water Observations Borehole Casing Borehole Casing Borehole Diameter Borehole Casing Borehole Casing Borehole Diameter Date Time Borehole Casing Borehole Diameter Interpretation Inte						100	38	19	40			Extremely weak thinly laminated greyish brown distinctly weathered fissile MUDSTONE with alternating thin beds of greyish brown fine clay. (Distinctly weathered COAL MEASURES) extremely weak mudstone crumbles into tabular fragments of mudstone when handled. Extremely weak to very weak thinly laminated partially weathered grey MUDSTONE with occasional thick laminations of black coal. Bedding fractures are 5° extremely closely to closely spaced undulating rough infilled with grey brown clay fine to coarse gravel of mudstone. (Partially weathered COAL MEASURES)	-12.10	-	
Date Time Borehole Casing Borehole Water Character Water	19.30-20.80					100	67	33	100			between 18.50 and 18.90m depth non intact recovered as fine to coarse tabular gravel of mudstone at 19.16m depth bedding fractures is 5° infilled with grey brown clay with non intact upper wall rock. Very weak thinly laminated grey distinctly weathered fissile MUDSTONE with very closely to closely spaced extremely weak thinly laminated grey friable mudstone and completley weathered mudstone. (Distinctly weathered COAL MEASURES) at 19.60 and 19.75m depth extremely	-	- - -	
Date Time Bolehole Cashing Diameter Water	Во	oring	Progres	s and	Water Ob							Ganaral Damarka			
	Date	Гіте		- 1	_	Dian	neter		- 11			General Kemarks			

GINT_LIBRARY V8_04.GLB1Log_COMPOSITE_LOG | 727305_BRISTOL_RAPID_TRANSIT.GP1 - v8_04 | 29/10/13 - 11:03 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

| Date | Time | Borehole | Casing | Depth | De

Contract Re	Rapid	7F *4						Cli	ent:			Boreho	10.	
Contract Re	Rapid	TD *4						l Cir	CIIC.			Dorcho		
		1 ransıt A	Ashton	Vale to							Bristol City Council		В	H514
	ef:			Start:	02.1	2.12	Grou	ınd Le	vel (m	AOI	0): National Grid Co-ordinate:	Sheet:		
	7273	305		End:	05.1	2.12			<u>7.20</u>		E:356087.3 N:170934.2		9	of 10
Depth (m)	No	Samples Type		ting sults		SCR	anical RQD		Backfill	Water	Description of Strata	Reduced Level	Depth (Thick ness)	
()					100	67	33	NI 100 150			between 20.00 and 20.10m depth extremely weak thinly laminated grey friable mudstone. MUDSTONE recovered as stiff reddish brown and grey slightly sandy clay with frequent extremely weak lithorelicts of mudstone (destructured weathered mudstone). (Destructured COAL MEASURES)	-	20.30	
20.80-22.30	0				*	*		*			Extremely weak to very weak thinly laminated grey partially weathered	-13.90	(0.80)	
21.64-21.74	4 20	CS			100	73	26	NI 100 260			laminated grey partially weathered MUDSTONE with frequent thin laminations of black coal. Bedding is 5°. (Partially weathered COAL MEASURES) between 21.10 and 21.30m depth very weak grey mudstone between 21.30 and 21.55m depth mudstone is extremely weak between 21.45 and 21.55m depth mudstone is highly weathered recovered as stiff reddish brown grey clay with extremely weak lithorelicts arranged in lorder.	-14.35	- (0.45) - 21.55 - (0.30)	× × × × × × × × × × × × × × × × × × ×
								260			Strong thinly laminated grey fresh partially weathered SILTSTONE. (Partially weathered COAL MEASURES) at 21.75m depth fractures is 5° undulating rough infilled with reddish brown clay. between 21.75 and 21.85m depth non intact. Extremely weak to very weak thinly laminated grey distinctly weathered MUDSTONE. Bedding fractures are 5 to 15° very closely to closely spaced undulating rough infilled with grey clay (up	-14.65	21.85	X X X X X X X X X X X X X X X X X X X
22.30-22.80	0				80	60	46				to 5mm). (Distinctly weathered COAL MEASURES) between 22.30 and 22.80m depth mudstone extremely weak and crumbles	-	-(0.95) -	
				.				П						
F	Boring	Progress			Bore		117				General Remarks			
		Borel	hole I (Casing	Done		Wate	er II			Contract I Contact IX			
Date	Time	Dep		Depth	Dian (m	eter	Dept	- 11						

GINT_LIBRARY V8_04.GLB1Log_COMPOSITE_LOG | 727305_BRISTOL_RAPID_TRANSIT.GP1 - v8_04 | 29/10/13 - 11:03 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

| Date | Time | Borehole | Casing | Depth | De

Contract:								Cli	ent:						Boreho		
Bristol F	Rapid	Transit	Ashton	Vale to	Templ	e Mea	ıds				Bris	stol City C	Council			В	H514
Contract Ref	:			Start:	02.1	2.12	Grou	ınd Le	vel (m			National Grid			Sheet:		
	727	205		End:	05.1				7.20			F-35609	37.3 N:17	0034.2		10	of 10
	121,			•			<u> </u>					E.55000	77.5 11.17	U/JT.2			
Depth (m)	No	Sample: Type		sults		Mecha SCR (%)			Backfill	Water		Descrip	tion of Strata	ı	Reduced Level	Depth (Thick ness)	Material Graphic Legend
					1 70)	(/0)	(70)	(11111)			into	angular fragme	ents when han	dled.	Н		
-								NI							-	_	
					80	60	46	100									
•					Ι.	١.,	١,	260		1					-	-	
								1							15.60	22.00	
						-		-	/////	1	D	1, .1, 4,	1 -+ 22 00	l 41-	-15.60	22.80	
											Bore	ehole terminate	d at 22.80m d	lepth.		-	
_															_	_	
-																	
_															L		
															-	-	
-															-	L	
		L			1	1				<u> </u>							
								-11									

	Boring P	rogress and	Water	Observations				C_{α}		D ama anlea		
Doto	Time	Borehole	Casin	Borehole Diameter				Ge	merai	Remarks		
Date	Time	Depth	Dept	h (mm)	Depth							
							All dimensi	ons in metre	S	Scale:	1:14	
Method Used:		c sampling - rv Cored		lant [sed: Cor	nacchio MC	300	Drilled By:	LH	Logged By:	BSaimen + EBall	Checke By:	AGS

Contract:						Client:					Boreho	ole:	
Bristol R	Rapid	Transit .	Ashton Vale to						tol City Council			В	H515
Contract Re			Start:	21.11.12	Ground		AO	D):	National Grid Co-ordinate:		Sheet:		
	7273			27.11.12		8.85			E:356109.1 N:170	928.4		1	of 11
Depth (m)	No	Samples Type	Results	Mecha TCR SCR (%) (%)	RQD If		Water		Description of Strata		Reduced Level	Depth (Thick ness)	Material Graphic Legend
				(70) (70)	(70) (111			cons	DE GROUND: Grass over T isting of soft brown sandy		8.75	0.10	
0.10-0.30	1	В						(MA)	frequent roots. DE GROUND) DE GROUND: Firm grey		-	(0.20)	
0.30 0.30-0.40	2 3	ES B						frequ	on slightly sandy gravelly CL gent roots. Gravel is subar- ded fine to coarse of li- sional brick and occasional co	ngular to mestone,	8.55	0.30	
0.40-0.60	4	В					≈	MA	DE GROUND) DE GROUND: Firm grey tty sandy gravelly CLA ium cobble content. Gravel is	Y with	-	-	
0.60-0.80	5	В					″₩	conc	abangular fine to coarse of li- crete and brick.	mestone,	-	-	
0.70	6	ES						plast	DE GROUND) at 0.40m depth frequent frag ic, plastic bag, wood and cera	mic.		(0.90)	
0.80-1.20	7	В						sligh suba lime	from 0.60m to 0.80m dep titly clayey sandy angingular fine to coarse gr stone, brick, clinker and ash	alar to avel of deposits.	-	-	
								Stro	ments of metal, plastic and ng hydrocarbon odour. . from 0.80m to 1.20m dep rs of plastic bags.		-	1.20	
1.20-1.51	8	SPT	1,2/9,32,9 for 10mm					sligh		ılar to	7.65	1.20	
1.20-1.40	9	B B	N=94*					lime with	ngular fine to coarse GRA stone, brick, clinker and ash fragments of metal and plasti ocarbon odour.	deposits	-	-	
								(MA	ocarbon odour. DE GROUND) from 1.20m to 1.40m cominantly plastic bags.	m depth	-		
_											-		
_											-		
2.00-2.22	11	SPT(c)	5,20/34,16 for 23mm								_	-	
2.00 2.00-3.00	12 13	ES B	N=153*								-	(2.00)	
_											-	-	
-											-	-	

DIQ Old		Boring Pr	ogress and	Water C	bservations		Chisel	ling / Slow	Progress	General R	amarlea	
The	Date	Time	Borehole		Borehole Diameter	Water	From	To	Duration (hh:mm)	General R	emarks	
tol			Depth	Depth	(mm)	Depth			(1111.111111)	1. Location CAT scanned an	d inexaction nit	dua
Bris	22/11/12	11:30	0.70	1.00	200	0.60	1.50	2.00	01:00	to 1.20m depth prior to dri		uug
- S	23/11/12	09:00	2.50	3.39	200	0.65	2.20	2.50	00:30	2. Rotary coring from 11.00r	m to 26 30m der	oth
Ĭ	23/11/12	12:30	10.50	7.80	150	10.50				3. Strong hydrocarbon odour		
ad (26/11/12	01:00	11.00	10.50	121	1.80				1.20 to 3.20m depth.		-
He.	27/11/12	09:00	18.90	11.00	121	0.00				4. Water strike at 10.50m dep	pth.	
Ę										5. Water flush used.		
Soils												
Š										All dimensions in metres So	cale: 1:14	
Structura	Method Used:		ercussion + y Cored	- Pla Us		ando 2000 acchio MC		Drilled By:	AL + LH	30	Checke By:	AGS

Contract:	ont I T	Γwar -**	Achton V-1-	Tomul- M	ada	Client:		Rris	tol City	Council	В	oreho		3H515
Contract Re		ransit	Ashton Vale to	21.11.12		l nd Level (m				d Co-ordinate:	S	heet:	D	тэт.
	 7273	05	1	27.11.12	Groun	8.85	7101). 		09.1 N:170928		icct.	2	of 11
			s & Testing		anical I		ı					n le	Depth	Materi
Depth (m)	No	Туре	Results	TCR SCR (%) (%)	RQD (%) (Backfill & Bornentation	Water		Descri	ption of Strata	-	Level	(Thick ness)	
3.00-3.45 3.00-3.40 3.40-3.80 3.50	14 3 15	SPT(c) B B	8,6/3,3,2,2 N=10					lense	s of dark	CLAY with occasi brown-black org	onal	5.65	3.20	
3.80-4.00 4.00-4.20 4.00-5.00 4.10-4.20	17	B U(UT100) B D	80 blows 20% recovery					close	from 4.00m t ly spaced th sand.	o 5.00m depth occasi in laminae of red br	onal own		(2.40)	
											-		-	x

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Canaral Damarica
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General Remarks
Bute	Time	Depth	Depth	(mm)	Depth	110111	10	(hh:mm)	6 SDT hammara EOLIO22 2012 (E = 62 549/)
									6. SPT hammers EQU083-2012 ($E_{\rm r}=63.54\%$), EQU251-2012 ($E_{\rm r}=72.73\%$) used.
									All dimensions in metres Scale: 1:14
Method Used:		ercussion + ry Cored	Plan Used		ando 2000 - acchio MC		Drilled By:	AL + LH	Logged CSquires + Checke By: EBall By: AGS

•													7 L11			
Contract:							Cli	ent:						Boreho	ole:	
Bristol R	apid	Transit	Ashton Vale to	Templ	e Me	ads				Bris	tol City	Council			В	H515
Contract Ref	:		Start:	21.11	1.12	Grou	ınd Le	evel (m	AO	D):	National Gri	d Co-ordinate	:	Sheet:		
7	727	305	End:	27.11	1.12		;	8.85			E:3561	09.1 N:17	70928.4		3	of 11
		Sample	s & Testing	N	/lecha	nical	Log	1 & 1- ion	H.					sed el	Depth	Material
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	If (mm)	Backfill & Instru- mentation	Water			iption of Strat		Reduced Level	(Thick ness)	Graphic Legend
5.00-5.30 5.00	22 35	B ES								dark	from 5.00m brown black	to 5.60m dep clayey amorp	th very soft hous peat.	-	-	 &x x x
5.20-5.65	21	SPT	1,1/1,1,1,1 N=4											-	_	<u>x </u>
5.30-5.60	23	В												-	-	x x x xx
5.60-6.00	24	В								sligh	n brown lo atly sandy silt LUVIUM)	ocally poorly by CLAY.	laminated	3.25	5.60	xx -xx -xx
6.00-6.50	25	U _(UT100)	20 blows 95% recovery											-	-	X X X X X X X X X X X X X X X X X X X
6.50-6.70 6.50-7.00	26 27	D B								brov	n with oc	n depth becom ecasional sub arse gravel of	angular to	-	(1.40)	*
7.00-7.50	28	В								CLA angu litho	AY with odular fine to describe to continue to continu	own friable slig ccasional sub coarse of weal OSTONE GR	angular to k mudstone	1.85	7.00	
			c and Water Obs								y Progress					

		Boring Pr	ogress and	Water Ob	servations		Chisel	ling / Slow	Progress		Comoral	Dama	1	
	Date	Time	Borehole		Borehole Diameter	Water	From	To	Duration (hh:mm)		General	Remai	KS	
100	Duite	1 11110	Depth	Depth	(mm)	Depth	110111	10	(1111.111111)					
								1						
,								1						
								1						
1														
ž,								1						
1								1						
										All dime	nsions in metres	Scale:	1:14	
, mil	Method	Cable P	ercussion +	- Plan	t D	ando 2000	+	Drilled	AL+	Logged	CSquires +	Checke		
í	Used:	Rotai	ry Cored	Use	d: Com	acchio MC	2300	By:	LH	By:	ÉBall	By:		AGS

120											DUKER	ULI		J
Contract:						Cli	ent:					Boreho		
		Transit	Ashton Vale to	_						tol City			BH51	5
Contract Ref				21.11.1	- 1			AO	D):		d Co-ordinate:	Sheet:		
	7273	305	End:	27.11.1			8.85			E:3561	09.1 N:170928.4		4 of 1	1
Depth (m)	No		Results	TCR SC (%)	hanical R RQD	Log	ackfill & Instru- nentation	Water		Descri	ption of Strata	Reduced Level	Depth (Thick ness) Mater Graph Leger	hic
7.50-7.95	29	SPT	1,3/3,5,5,7 N=20		(73)	(11111)	H		stiff	from 7.50m with occasion	depth becoming firm to nal mudstone lithorelicts.	-		
- - 8.00-9.00 - -	30	В										-		티린티티리티티티티티티티티티
- - - - 9.00-9.45	31	SPT	6,8/11,14,13,1 N=52	4				<u>‡</u>				-	(3.50)	
- 9.50-10.50 - -	32	В							 very	. from 9.50m stiff with gre	n depth becoming stiff to by green weathering.	-		
Во	oring	Progres	s and Water Ob	oservations			Chise	lling	/ Slov	v Progress	Ganaral	D		<u>-</u>

	Boring Pr	rogress and	Water Ob	servations		Chisel	ling / Slow	Progress	C		Damar	1.0	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	G	eneral l	Kemai	KS	
		.,	-1-	,	- 1								
									All dimensions	s in metres	Scale:	1:14	
Method Used:		ercussion + ry Cored	Plan Used		ando 2000 acchio MC		Drilled By:	AL + LH	Logged CSo	quires + EBall	Checke By:	1,11	AGS

0-														KEN			.00
Contract:								Cli	ient:						Boreho		
Bristol R	•	Transit			_							stol City				В	H515
Contract Ref	:			Start:	21.1	1.12	Grou	ınd L	evel (m	AOl	D):	National Gr	id Co-ordin	ate:	Sheet:		
7	273	305		End:					8.85			E:3561	109.1 N:	170928.4		5	of 11
Depth (m)			s & Testi		TCR (%)	Mecha SCR	RQD	Log	Backfill & Instru- mentation	Water		Descr	iption of St	rata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
10.50-10.92			6,7/10,10 for 44 N=5	0,14,16 0mm		(%)	(%)	(mm)	B	<u> </u>	with	some ver Istone.	ry weak	sandy CLAY lithorelicts of GROUP Zone	-1.65	10.50	Enguina
11.00-12.50					100	0	0	NI			with	rare pinkis el sized nodu ERCIA MUI	sh white fin	y sandy SILT ne to medium um. GROUP Zone	-2.15	11.00	
-								V			grav grey	rel sized inc r sand.	Elusions of	n depth coarse hard greenish requent fine to of hard	-3.65	12.50	

		Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Conoral I	Damar	120	
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General I	Xemai	KS	
\vdash			Depth	Depth	(mm)	Depth			(
										All dimensions in metres	Scale:	1:14	
1	Method	Cable P	ercussion +	- Plan	t Da	ando 2000	+	Drilled	AL+	Logged CSquires +	Checke		
I	Jsed:	Rotai	y Cored	Used	d: Com	acchio MC	300	By:	LH	By: ÉBall	By:		AGS

						С	lient:			Boreho		
apid '	Transit	Ashton Vale to	Tem	ple Me	eads				Bristol City Council		В	H515
		Start:	21.	11.12	Grou	und I	Level (m	AO	D): National Grid Co-ordinate:	Sheet:		
273	305	End:					8.85		E:356109.1 N:170928.4		6	of 11
	_		TCI	Mech SCR	anical RQD	Log	ckfill & nstru-	Water	Description of Strata	educed	(Thick	Mater Graph Leger
38	CS	Results			64				Weak to medium strong reddish brown mottled greenish grey silty SANDSTONE. Discontinuities predominantly subhorizontal to 50° closely spaced smooth with occasional fine sand infill. (MERCIA MUDSTONE GROUP Zone I)	- - - -	(0.50)	
36	SPT	25/68,32 for 10mm	+				-		Medium strong thinly to thickly bedded reddish brown mottled greyish green silty SANDSTONE. Greenish grey sandstone	-4.15	13.00	
		N=353*							Discontinuities predominantly subhorizontal closely to medium spaced rough to smooth with film of fine sand. (MERCIA MUDSTONE GROUP Zone I) from 13.00m to 13.10m depth extremely weak at 13.22m depth dissolution hole 10mm diameter partially infilled with chalky gypsum crystals.	- - -	(1.20)	
39	CS		100	100	97				grains in the sandstone lenses from 13.40m to 13.92m depth occasional subrounded fine quartzite gravel.	-	-	
40	CS					<u> </u>			greenish grey medium strong medium to coarse sandstone with rare reddish brown lenses. Rough boundaries. Extremely weak thinly laminated reddish brown slightly sandy SILTSTONE.	-5.35	14.20	× × × × × × × × × × × × × × × ×
37	SPT	25/69,31 for 15mm N=333*	100	0 100	96				fractures subhorizontal medium to widely spaced rough with no infill. (MERCIA MUDSTONE GROUP Zone I) from 14.50m to 14.60m depth becomes 50% mottled with greenish grey fine sand.	- - -	-	X X X X X X X X X X X X X X X X X X X
	No 38 39 40	27305 Samples No Type 38 CS 36 SPT 39 CS 40 CS	Start: End:	Start: 21.1 End: 27.3 Samples & Testing No Type Results C% 38 CS 36 SPT 25/68,32 for 10mm N=353* 39 CS 100 40 CS 37 SPT 25/69,31 for 15mm N=333* 38 CS 100 CS 100 40 CS 100 CS 100 CS 37 SPT 25/69,31 for 15mm N=333* 40 CS 100 CS 100 CS 37 SPT 25/69,31 for 15mm N=333* 40 CS 100 CS 100 CS 100 CS 40 CS 100 CS 100 CS 100 CS 100 CS 40 CS 100 CS 100	Start: 21.11.12 End: 27.11.12	Samples & Testing Mechanical	Start: 21.11.12 Ground I	Start: 21.11.12 Ground Level (max 27.11.12 8.85	Start: 21.11.12 Ground Level (m AOI	Start: 21.11.12 Ground Level (m AOD): National Grid Co-ordinate: 27.11.12 8.85 E:356109.1 N:170928.4	Start: 21.11.12 Ground Level (m AOD): National Grid Co-ordinate: Sheet: 27.31.12 S.85 E.356109.1 N:170928.4	Start 21.11.12 Ground Level (m AOD): National Grid Co-ordinate: Sheet 27.11.12 8.85 E:356109.1 N:170928.4 6

	Boring Pr	rogress and	Water Ob	servations		Chisel	ling / Slow	Progress	General	Domor	 1 _{za}	
Date	Time	Borehole	0	Borehole Diameter	Water	From	To	Duration (hh:mm)	General	Kemai	KS	
		Depth	Depth	(mm)	Depth			(1111.111111)				
									All dimensions in metres	Scale:	1:14	
Method	Cable P	ercussion +			ando 2000	+	Drilled	AL+	Logged CSquires +	Checke		
Used:	Rotai	ry Cored	Used	l: Com	acchio MC	300	By:	LH	By: EBall	By:		AGS

Contract:							C	lient:				Boreho		
		Transit .	Ashton Vale to								stol City Council		В	H515
Contract Ref						Gro	und l	Level (m	AO	D):	National Grid Co-ordinate:	Sheet:		
7	27 3		End:					8.85			E:356109.1 N:170928.4		7	of 11
Depth (m)	No		Results	TCR	Mech:	RQI	l Log	Backfill & Instru-	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Materia Graphi Legen
15.90-17.40	41	CS		100	100	96	NI 956			grav sand	. from 15.85m to 15.90m depth lenses ome frequent.	-7.80		**************************************
17.05-17.35	42	CS					50 350 750	0		grey SAN coan mot (MF	NDSTONE with frequent subrounded rea quartz sand grains and occasionally tled with reddish brown siltstone. ERCIA MUDSTONE GROUP Zone I) dium strong thinly to medium bedded dish brown silty fine SANDSTONE in frequent subrounded coarse quartz	-8.15	-(0.35) 17.00	
17.40-18.90				100	X 80	62	-				ERCIA MUDSTONE GROUP Zone I)	-	-	

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress		General 1	Damai	rlza	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)		General	Kemai	IKS	
		Бериі	Бериг	(111111)	Бериг								
									All dimens	sions in metres	Scale:	1:14	
Method Used:		ercussion + ry Cored	Plan Used		ando 2000 - acchio MC		Drilled By:	AL+ LH	Logged By:	CSquires + EBall	Checke By:		AGS

Contract:	anid '	Transit	Ashton Vale to	Temi	ale M	eads	2	Cl	ient:		Bris	stol City Council	Boreho		3H515
ontract Ref		11 ansit						ınd L	evel (m			National Grid Co-ordinate:	Sheet:		
7	727 3	305	End:			1			8.85			E:356109.1 N:170928.4		8	of 11
Depth (m)		Samples Type	& Testing Results	TCR	Mech	anic	cal D	Log If	Backfill & Instru- mentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	
17.80	43	CS		(70)				50 350			 fine	at 17.73m depth becomes weak. from 17.85m depth frequent angular grey mudstone gravel inclusions.	-	(1.30)	
				100	80	65	2	750			Gra med red	des into almost entirely and fine to lium mudstone fragments from 17.85m to 18.30m depth with silt matrix.	-9.45	18.30	
				<u></u>			,				silty extr smo surf (Dis ME mor	weathered weathe	-	-	
8.90-20.30								NI 50					-	(1.55)	
				100							extr wea	from 19.40m to 19.55m depth emely weak pinkish grey highly thered siltstone.	-11.00	19.85	X
											freq	uent specks of white chalky gypsum rare angular medium to coarse hard	-	(0.23)	×

		Boring Pr	ogress and	Water O	bservations		Chisel	ling / Slow	Progress	General Remarks
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General Kemarks
201										
,										
										All dimensions in metres Scale: 1:14
	Method Used:		ercussion + ry Cored	- Pla Use		ando 2000 acchio MC		Drilled By:	AL + LH	Logged CSquires + Checke By: EBall By: AGS

Contract:							Cli	ient:		Borehole:
Bristol Ra	pid '	Transit .	Ashton Vale to	Templ	e Me	ads				Bristol City Council BH515
Contract Ref:							ınd L	evel (m		•
7	273	305	End:	27.1				8.85		E:356109.1 N:170928.4 9 of 11
Depth (m)		Samples Type	& Testing Results	TCR	Aecha SCR (%)	nical RQD	Log If	Backfill & Instru- mentation	Water	Description of Strata 3 - Depth (Thick ness) Graphic Legend
20.30-20.90				100	0	0	NI 50			black coal fragments (possibly completely weathered mudstone) (COAL MEASURES) Extremely weak thinly laminated reddish dark grey silty partially weathered MUDSTONE. Discontinuities are closely spaced, crumbles along fissures into angular fine to coarse fragments with vitreous lustre on surfaces when handled. (Partially weathered COAL MEASURES) from 20.50m to 20.52m depth thin band of soft reddish brown silt.
20.90-21.80	44	CS		83	44	11	NI 30 200			from 20.68m to 20.79m depth very wet reddish grey silty clay. Possibly highly to completely weathered mudstone from 20.79m to 20.90m depth becomes weak to medium strong breaking into angular coarse blocks along wide fissures. Crumbles when handled. Recovered as reddish grey slightly clayey gravel of angular fine to medium highly weathered extremely weak MUDSTONE. (Highly weathered COAL MEASURES) Weak thinly laminated dark grey partially weathered MUDSTONE. Discontinuities subhorizontal to 10° extremely closely spaced to close space rough to smooth with red clay infill. (Partially weathered COAL MEASURES) at 21.30m depth 40° dipping rough
· · 21.80-23.30 ·				*	*	*	NI			undulating fracture with red clay smears on upper fracture surfaces. Lower surface is loose breaking into gravel. from 21.40m to 21.47m depth wide horizontal rough planar fracture infilled with gravelly clay. Red clay smears on lower fracture surface. Very weak to weak thinly laminated dark grey mottled brown distinctly weathered MUDSTONE with red clay on fissure surfaces. Crumbles into fine fragments when handled. Locally gravelly. (Distinctly weathered COAL MEASURES)
				100	32	0	NI 30 50	-		Weak to medium strong thinly laminated dark grey partially weathered MUDSTONE. Discontinuities very close to closely spaced rough to smooth with some clay infill. (Partially weathered COAL MEASURES)

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Canaral	Damar	·1-a	
Date	Time	Borehole Depth	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General 1	Kemai	KS	
		Depin	Depth	(mm)	Depth			, ,				
									All dimensions in metres	Soolo:	1.14	$\overline{}$
									An unnensions in metres		1:14	
Method		ercussion +		:	ando 2000		Drilled	AL+	Logged CSquires +	Checke		A C C
Used:	Rotai	v Cored	Use	1: Com	acchio MC	300	By:	LH	By: EBall	By:		AGS

TCR SCRROD F Se Se Se Se Se Se Se	Contract:							Cl	ient:		Borehole:
Samples & Testing	Bristol Ra	pid '	Transit .	Ashton Vale to	Tem	ole Me	ads				Bristol City Council BH515
Depth (m) No Type Results TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree Section TCR SCR ROD Tree TcR SCR ROD Tree TcR Scr TcR T	Contract Ref:			Start:	21.1	1.12	Grou	ınd L	evel (m	AO	DD): National Grid Co-ordinate: Sheet:
. at 22.47m depth 30° dipping tight rough undulating fracture infilled with gravelly clay at 22.50m depth 30° dipping tight rough undulating fracture with red clay on fracture surfaces	7	27 3	305	End:							
. at 22.47m depth 30° dipping tight rough undulating fracture infilled with gravelly clay at 22.50m depth 30° dipping tight rough undulating fracture with red clay on fracture surfaces					TCR	Mecha SCR	RQD	Log If	Sackfill & Instru- nentation	Water	Description of Strata Description of Strata Depth (Thick Graphic ness) Legend
24.80-26.30 Medium strong thinly bedded dark grey partially weathered MUDSTONE. 100 67 33 100 Discontinuities are subhorizontal	23.30-24.80			Results	100	32	0	NI 30 50 NI NI 50			at 22.47m depth 30° dipping tight rough undulating fracture infilled with gravelly clay at 22.50m depth 30° dipping tight rough undulating fracture with red clay on fracture surfaces from 22.50m to 22.65m depth 60°-20° dipping tight rough undulating fracture with red clay on fracture surfaces. Cross cuts bedding plane at 22.65m depth 30° dipping very tight rough undulating fracture with clean surfaces from 22.70m to 22.86m depth highly weathered recovered as clayey gravel. Dark grey black thinly laminated vitreous COAL recovered as angular fine gravel of coal. (COAL MEASURES) at 22.94m depth becoming darker grey almost black. Very weak to weak thinly laminated dark grey locally partially weathered MUDSTONE. Discontinuities are predominantly extremely close to close spaced smooth to rough with clay infill up to 2mm thick. (Partially weathered COAL MEASURES) from 24.02m to 24.23m depth becomes extremely closely spaced fracture. from 24.23m to 24.80m depth extremely closely spaced fracture. Fractures are tight rough undulating with
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.80-26.30				100	67	33				Medium strong thinly bedded dark grey partially weathered MUDSTONE.

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Canaral	Damar	·1-a	
Date	Time	Borehole Depth	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General 1	Kemai	KS	
		Depin	Depth	(mm)	Depth			, ,				
									All dimensions in metres	Soolo:	1.14	$\overline{}$
									An unnensions in metres		1:14	
Method		ercussion +		:	ando 2000		Drilled	AL+	Logged CSquires +	Checke		A C C
Used:	Rotai	v Cored	Use	1: Com	acchio MC	300	By:	LH	By: EBall	By:		AGS

0										DOMETIN			
Contract:							Cl	ient:			Boreho	ole:	
Bristol R	apid	Transit	Ashton Vale t	о Тетр	ole Me	eads				Bristol City Council		BH	515
Contract Ref				21.1			und L	evel (m			Sheet:		
7	727.	305		27.1	1.12			8.85		E:356109.1 N:170928.4		11 of	11
Depth (m)	No		s & Testing Results	TCR	Mech SCR	anica RQI	Log If	Backfill & Instru- mentation	Water	Description of Strata	Reduced Level	(Thick G	faterial Fraphic Legend
26.00-26.10		CS		100		333	500 1000 2000			to rough with occasional thin film of clay infill. (Partially weathered COAL MEASURES) at 25.00m depth 60° dipping wide smooth undulating fracture smooth clean surfaces from 25.15m to 25.23m depth recovered as angular fine to medium mudstone gravel. Drilling induced from 25.35m to 25.55m depth recovered as angular fine to medium gravel. at 25.65m depth 20° dipping wide rough undulating fracture. Clean surfaces.		(1.50)	

		Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Canaral	Damas	-1	
Da	ate	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Kemai	IKS	
-			Depui	Depui	(mm)	Depui			, ,				
		ı											
		ı											
		ı											
		ı											
		ı											
										All dimensions in metres	Scale:	1:14	
Metl			ercussion +	- Plan Used		ando 2000 - acchio MC		Drilled By:	AL + LH	Logged CSquires + By: EBall	Checke By:		AGS

Contract:					С	lient:			Boreho	le:	
Bristol R	apid	Transit	Ashton Vale to	Temple Mea	ıds			Bristol City Council		В	H516
Contract Ref:			Start:	19.11.12	Ground I	Level (m	AOI	D): National Grid Co-ordinate:	Sheet:		
7	273	305	End:	28.11.12		11.24		E:356190.1 N:170912.9		1	of 6
Depth (m)	No		s & Testing Results	Mecha TCR SCR (%) (%)	nnical Log RQD If	ckfill & nstru- entation	Water	Description of Strata	Reduced Level	(Thick	Material Graphic Legend
0.10-0.50	1	В	Results	(%) (%)	(%) (mr			MADE GROUND: Grass over soft to firm grey brown slightly sandy slightly gravelly locally friable CLAY with occasional roots. Gravel is subangular to rounded fine to coarse of limestone, sandstone and chert. (MADE GROUND)	- - - -	ness)	
0.50 0.50-0.70	2 3	ES B						MADE GROUND: Soft grey brown slightly sandy gravelly friable CLAY with	10.64	0.60	
0.70-0.80	4	В						low cobble content and occasional fragments of wood and fabric. Gravel is subangular to rounded fine to coarse of	-	-	
0.80-1.20	5	B ES						concrete, clinker and occasional ceramics. (MADE GROUND) from 0.70m depth occasional fragments of pumice and plastic from 0.80m depth varying percentage	-	- -	
1.20-1.65	7	SPT	3,3/6,7,4,5 N=22					of clay pockets. Increase in granular material predominantly medium to coarse gravel of limestone, sandstone and brick. from 1.20m depth becoming dark	-	-	
1.20-2.00	8	В	N=22					grey-black in colour.	-	(1.40)	
2.00 2.00-2.45 2.00-2.50	9 10 11	ES SPT B	1,1/1,3,4,6 N=14					MADE GROUND: Medium dense dark brown black locally clayey gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of brick, clinker, limestone and sandstone. (MADE GROUND) from 2.00m to 2.50m depth driller notes strong methane odour.	9.24	2.00	

Old		Boring Pr	ogress and	Water	Observations		Chisell	ing / Slow l	Progress	Canaral Damarka
I: The	Date	Time	Borehole		Diameter	Water	From	То	Duration (hh:mm)	General Remarks
ıstc			Depth	Deptl	h (mm)	Depth			(1111.111111)	1. Location CAT scanned and inspection pit dug to
Br	19/11/12	14:30	4.10	3.40	200	4.10				1.20m depth prior to drilling.
ė	21/11/12	09:20	4.30	6.40	150	4.00				2. Cable percussion from 1.20m to 10.00m depth.
#	28/11/12		10.70	10.70	0 121	10.70				3. Rotary coring from 10.00m to 14.50m depth.
Soils Ltd, Head (8" casing reduced to 6" through bentonite seal at base of landfill (6.40m). Water strike at 10.70m depth.
l So										All dimensions in metres Scale: 1:14
tructura	Method Used:		ercussion + ry Cored			ando 2000 - nacchio MC		Drilled By:	AL + LH	Logged CSquires + Checke By: EBall By: AGS

Contract:								Client	:							Boreho		
		Transit	Ashton V									stol City					E	BH516
Contract Ref					19.11.		Ground			AOD):	National Grid				Sheet:		
	7273				28.11.				.24			E:3561	90.1 N	:170912	2.9		2	of 6
Depth (m)	No		s & Testii Resu		TCR S	CR R	QD (r	g go Reckfill & Ji	Instru- nentation	Water		Descri	ption of S	strata		Reduced Level	Depth (Thick ness)	Materi Graph Legen
2.50-3.00	12	В				7.99	(3)				frag	. from 2.501 ments and c sional concre	obbles of	occasional i	metal and	-	-	
3.00-3.45 3.00-4.00	13 15	SPT B	1,13/5, N=	3,4,4												- - -	(2.00)	
3.50	14	ES								<u>1</u>							- - -	
4.00-4.45 4.00-4.50 4.10	16 17 21	SPT B W	3,3/3,4 N=	4,3,3						1	sand to si lime Occi brick	DE GROUNI y occasional ubangular fin stangular con sands asional cobble t. DE GROUN	ly slightly e to coars tone, clin e of limest	clayey an se GRAVE ker and b	gular L of orick.	7.24	4.00	
4.50-5.00	18	В									matr	from 4.50m o	depth incre	ease in silty	sand	- - -	(1.40)	

	Boring Pr	rogress and	Water Ob	servations		Chisel	ling / Slow	Progress	General	D amarlza
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	General	Keiliaiks
		Бери	Берш	(11411)	Бериі				6. Water flush used.7. SPT hammers EQU083- EQU251-2012 (E_r = 72.	
									All dimensions in metres	Scale: 1:14
Method Used:		ercussion + ry Cored	Plant Used		ando 2000 - acchio MC		Drilled By:	AL + LH	Logged CSquires + By: EBall	Checke By: AGS

Bristol Rap											
	id Tr	ansit 1	Ashton Vale to					Bristol City Council		В	BH516
Contract Ref:			1		1	nd Level (m			Sheet:		
72	730		<u> </u>	28.11.12		11.24		E:356190.1 N:170912.9		3	of 6
Depth (m) N		ype	& Testing Results	TCR SCI	nanical RQD		Water	Description of Strata	Reduced Level	Depth (Thick ness)	Materi Graph Legen
` '		SPT	2,3/3,2,1,2	(%) (%)) (%)	(mm) M E			N.	11088)	XXX
5.00 2	20 1	ES B	N=8						-	-	
5.50-6.00 2	23	В						MADE GROUND: Soft brown-orange brown silty CLAY with occasional angular fine to medium gravel of sandstone and occasional fragments of metal. (MADE GROUND)	5.84	5.40	
5.00-6.50 2	24	В						at 6.00m depth large metal fragment.	-	(1.10)	
5.50-7.00 2	25 U ₍₁	UT100)	27 blows 100% recovery					Very soft very low strength dark grey becoming grey slightly sandy silty CLAY with occasional angular fine to medium gravel of sandstone and mudstone. (ALLUVIUM)	4.74	6.50	
		D B						from 7.10m depth fine to coarse gravel sized pockets of firm reddish brown clay becoming occasional.	-	(1.20)	x
								sized pockets of firm reddish brown clay	-	(1.20)	x', x', x', x', x',

	Doring 1	051000 4114	mater ou	oci vationo		Ciliber	11115 / 510 11	11051055	C_{α}	<u> </u>	0 000000	1-0	- 1
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)	Ge		Remar	KS	
2.5.4.1			l nu				<u> </u>		All dimensions i		Scale:	1:14	
Method Used:					ando 2000 - acchio MC		Drilled By:	AL + LH		uires + Ball	Checke By:		AGS

Contract:								Cli	ent:				Boreho		
Bristol R		Transit	Ashton									stol City Council		В	BH516
Contract Ref				Start:			Grou				9):	National Grid Co-ordinate:	Sheet:		
	7273			<u> </u>	28.1				1.24			E:356190.1 N:170912			of 6
Depth (m)	No		s & Test Res	ing sults	TCR (%)	Mecha SCR (%)	RQD (%)	Log If (mm)	Backfill & Instru- mentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Materi Graph Legen
7.70-8.00	28	D									Stiff	f red brown and grey green slig	3.54	7.70	x
											sand extre litho	ly weathered CLAY with occasi emely weak fine to coarse muds orelicts. ERCIA MUDSTONE GROUP Z	onal tone	-	
8.00-8.45	29	SPT	10,15/15 N=	5,14,9,12 =50									-	-	
8.50-9.50	30	В									verv	. from 8.50m depth becoming stif stiff with frequent coarse muds orelicts.	f to tone	(2.30)	
9.50-9.89	31	SPT		14,20,6									- - - -	-	
				8mm 62*									1.24	10.00	

	Boring P	rogress and	Water Ob	servations		Chisell	ing / Slow 1	Progress	Canaral	Damas	n1-a	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Kemai	IKS	
		Deptii	Depui	(mm)	Deptil		+	, ,				
									All dimensions in metres	Scale:	1:14	
Method Used:					ando 2000 - acchio MC		Drilled By:	AL + LH	Logged CSquires + By: EBall	Checke By:		AGS

Contract:									Client:		D	rtal (%4- 4	Cor		Boreho) T
Bristol R ontract Ref		Transit	Ashton \					und	Level (m	AOI		National Grid		··	Sheet:	В	BH51
	1 27 3	205				1.12 1.12	Oic	Juliu	11.24		<i>)</i>).			70912.9	Silect.	5	of 6
			& Testi				1 anica	110		_		E.5501	70.1 11.1	10712.7		1	1
Depth (m)	No	Туре	Res			SCR (%)	RQI (%	D I	(m b gackfill & Instru-	Water		Descrip	ption of Stra	ata	Reduced Level	Depth (Thick ness)	Grap! Lege
0.00-11.50 0.06-10.37		CS			100	1	100			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	brov SIL grav grey wea	TSTONE with rel sized in	andy slightle rare subrounclusions crey partialle ndstone.	y micaceous inded medium of yellowish ly to fully	-	-	X X X X X X X X X X X X X X X X X X X
1.50-13.00 1.50-11.94	32	SPT 1	2,13/18, N=	,30,20,2 95	7	*	*		II 50 00		wea	from 11.20m k medium Istone inclusion	strong gr	lepth frequent eenish grey	-	(3.30)	× × × × × × × × × × × × × × × × × × ×
2.30-12.48	2	CS			100	70	67				wea	from 12.09m k to medium Istone inclusion	n strong ye	lepth frequent Illowish grey	-	-	X X X X X X X X X X X X X X X X X X X

		Boring Pr	rogress and	Water Ob	servations		Chisel	ling / Slow 1	Progress		General 1	Damar	-1-a	
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	From	То	Duration (hh:mm)		General	Kemai	KS	
			1	<u>.</u>		1								
										All dimens	ions in metres	Scale:	1:14	
, ,	Method Used:							Drilled By:	AL + LH		CSquires + EBall	Checke By:	1.14	AGS

Contract:							Cl	ient:				BOKER	Boreho		
	anid	Tuonsit	Ashton Vale to	Toma	la Ma	ada	CI	ient.		Rric	tol City (Council	Boreno		H516
Contract Ref		1 ransıı				-	ınd La	evel (m				l Co-ordinate:	Sheet:	ь	11310
	1273	305		28.1				11.24				90.1 N:170912.9		6	of 6
			s & Testing		Mech	anical					2.0001	, , , , , , , , , , , , , , , , , , ,	l ed		Materia
Depth (m)	No		Results	TCR	SCR (%)	RQD (%)	If (mm)	Backfill & Instru- mentation	Water		Descri	ption of Strata	Reduced Level	(Thick ness)	Graphi Legen
13.00-14.50				100		67	NI 150 600			Med stron yello Fraci dippi surfa fine (ium strong greddish wish grey are ng open roces. Occasic o medium groCLIFF	thinly to thickly bedded brown locally mottled medium SANDSTONE. predominantly 10°-20° bugh planar with clean shally infilled with angular	-2.06		X X X X X X X X X X X X X X X X X X X
13.68-13.88	3	CS		100	80	43	70 110 300			 quar	zite gravel.	depth rare rounded fine 14.14m depth becomes	-	(1.20)	
				₩	<u> </u>	₩	₩						-3.26	14.50	
										Bore	hole terminat	ed at 14.50m depth.			
													-	-	
			l							l					
В	oring		s and Water O	Servati		177	\parallel	Chise	elling	/ Slow	Progress	General	Rema	arks	
Doto ,	Timo	Bore	chole Casing	Diam		Wate	er	From		To	Duration	Contour			

	Boring Pr	rogress and	Water Ob	servations		Chisel	ling / Slow	Progress	Comoral	Damas	1	
Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration	General	Remai	KS	
Date	Tillic	Depth	Depth	(mm)	Depth	110111	10	(hh:mm)				
									All dimensions in metres	Scale:	1:14	
Method Used:					ando 2000 - acchio MC		Drilled By:	AL + LH	Logged CSquires + By: EBall	Checke By:		AGS

Contract:		7 5		T 1 1 1 1 1		Client:		Dwie	etal City Caunail	Boreho		H517
Contract Re		Transit .	Ashton Vale to			nd Level (m			stol City Council National Grid Co-ordinate:	Sheet:	D	ПЭ17
	1. 727;	205	1		1	,		טי.	E:356254.3 N:170911.3	Sheet.	1	c 7
	121		•	29.11.12	•	10.90			E:350254.5 N:170911.5	 		of 7
Depth (m)	No	Type	Results	TCR SCR	RQD (%)	Backfill & Bornentation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Material Graphic Legend
0.10-0.25	1	В						sand lime roun	DE GROUND: Grass over TOPSOIL sisting of soft brown slightly gravelly by CLAY with occasional cobbles of stone. Gravel is subangular to ded fine to coarse of limestone and latone. Occasional ceramic and of the coarse of limestone and of the coarse of limestone and occasional ceramic and occasional	10.65	-(0.25) - 0.25	
0.30-0.60	3	В						(MA	asional brick. Frequent roots. ADE GROUND)	-	-	
0.40	2	ES						mott	DE GROUND: Firm blue grey tled brown slightly sandy CLAY with sional roots. ADE GROUND)	-	-(0.35)	
0.60-1.00	4	В						MA	DE GROUND: Soft dark brown	10.30	0.60	
-								lime asph	ly gravelly CLAY. Gravel is ungular to subrounded fine to coarse of stone, brick and ceramic. Occasional nalt and occasional fragments of glass. ADE GROUND)	-	(0.40)	
1.00	5	ES				:•: =•:•		MA	DE GROUND: Medium dense brown	9.90	1.00	
1.00-1.20 1.20-1.65 1.20-2.00	6	B SPT(c)	2,3/3,2,2,2 N=9					grey suba lime Occa meta (MA	black sandy clayey angular to angular fine to coarse GRAVEL of astone, sandstone and occasional brick asional concrete, wood, plastic and al. Damp. ADE GROUND) from 1.20m depth occasional ceramic, as ash deposits and cobbles of astone and concrete.	-	-	
2.00-2.45 2.00 2.00-3.00	9 10 11	SPT ES B	1,2/3,15,11,10 N=39						. at 2.00m depth predominantly board and paper.	-	_(2.00)	

Old S		Boring Pr	ogress and	Water	Obser	vations		Chisel	ling / Slow	Progress	Canaral Damarka
Tue	Date	Time	Borehole		lg D	Borehole Diameter	Water	From	To	Duration (hh:mm)	General Remarks
2			Depth	Dept	th	(mm)	Depth			(1111.111111)	1 Leasting CAT assumed and inspection mit due
s Ltd, Head Oince - Bris	26/11/12 27/11/12					2.70 3.90				1. Location CAT scanned and inspection pit dug to 1.20m depth prior to drilling. 2. Cable percussion from 1.20m to 11.50m depth. 3. Rotary coring from 11.50m to 15.50m depth. 4. Water strike at 3.00m depth. 5. Water flush used. 6. SPT hammers EQU083-2012 (E _r = 63.54%),	
11 5011											All dimensions in metres Scale: 1:14
tructura	Method Cable Percussion + Plant Dando 20 Used: Rotary Cored Used: Comacchio						ando 2000 - acchio MC		Drilled By:	AL + LH	Logged BSaimen + Checke By: EBall By: AGS

										OL		
Contract:						Client:				Boreho		
		Transit	Ashton Vale to						tol City Council		В	BH517
Contract Ref				26.11.12	Grou	nd Level (m		D):	National Grid Co-ordinate:	Sheet:	_	_
7	7273		<u> </u>	29.11.12		10.90			E:356254.3 N:170911.3		2	of 7
Depth (m)	No		Results	TCR SCR	RQD	Backfill & Backfill wmntation	Water		Description of Strata	Reduced Level	Depth (Thick ness)	Graphic
3.00-3.45 3.00-4.00	12 14	SPT B	2,3/5,3,2,1 N=11		(70)		11	brow plant angu lime	DE GROUND: Soft locally firm darkyn sandy gravelly CLAY with frequent and cardboard fragments. Gravel is alar to subangular fine to coarse o stone, bricks and occasional concrete. DE GROUND)	7.90	3.00	
4.00-4.45	15 16	SPT B	1/1,4,15,30 N=50					 chan	. from 4.00 to 4.50m depth colou ge to light brown.	-	(2.00)	
4.50-5.00	17	В						pred	from 4.50 to 5.00m depth ominantly cardboard and paper.	5.90	5.00	

	Boring Pr	rogress and	Water Ob	servations		Chisel	ling / Slow	Progress	Canaral	Damar	1-0	
Date	Time	Borehole		Borehole Diameter	Water	From	То	Duration (hh;mm)	General	Remai	KS	
		Depth	Depth	(mm)	Depth		+	(1111.111111)	EQU251-2012 ($E_r = 72$.73%) used	d.	
	1											
	1											
	1											
						<u> </u>			All dimensions in metres	_	<u>1:14</u>	
Method Used: Cable Percussion + Rotary Cored			- Plan Used		ando 2000 - acchio MC		Drilled By:	AL + LH	Logged BSaimen + By: EBall	Checke By:		AGS

120														
Contract:						Client:					E	Boreho	le:	
Bristol R	apid	Transit	Ashton Vale to	Temple M	eads			Bris	tol City	Council			В	H517
Contract Ref	f:		Start:	26.11.12	Grou	nd Level (n	ı AO	D):	National Gri	d Co-ordinate:	S	sheet:		
	7273	305	End:	29.11.12	,	10.90)		E:3562	54.3 N:170911			3	of 7
Б. 1		Sample	s & Testing	Mech	anical	Log 💐 🛓 👨	e				,	ced el	Depth	Material
Depth (m)	No		Results	TCR SCR (%) (%)	RQD (%)	Backfill & Instru-	Water			iption of Strata		Reduced Level	(Thick ness)	Graphic Legend
(m) 5.00-5.45 5.00 5.00-6.00 	18 19 20	Type SPT ES B U(UT100)	3,3/2,1,2,2 N=7				M .	grey occa lenss (AL	very low st mottled bisional fine es of sand. LUVIUM) . from 6.00 ish brown sli r. slightly sand RCIA MUI	rength locally firm become silty CLAY we to medium gravel so to 7.00m depth lense ghtly sandy clay.	of -	3.90		Legend X X X X X X X X X
-													-	
В	oring	Progres	s and Water Obs	servations	- '	Chise	elling	g / Slov	v Progress	C	1 D		1	

	Boring P	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	General Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General Remarks
	Depth Depth (mm) De				Берш				
Made			Di		1 2000		Dellad	A.Y	All dimensions in metres Scale: 1:14
Used:	Method Cable Percussion + Plant Dando 20 Jsed: Rotary Cored Used: Comacchio						Drilled By:	AL+ LH	Logged BSaimen + Checke By: EBall By: AGS

GINT_LIBRARY V8_04 GLBILog COMPOSITE LOG | 727305_BRISTOL_RAPID_TRANSIT.GPJ - v8_04 | 29/10/13 - 18:06 | KJ.
Structural Soils Ltd., Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

0												NEI			.00
Contract:						Cli	ent:						Boreho	le:	
Bristol Ra	apid '	Transit	Ashton Vale to	Temple M	eads				Bris	stol City	Counci	l		В	H517
Contract Ref	:		Start:	26.11.12	Grou	ınd L	evel (m	AO	D):	National Gr	id Co-ordin	ate:	Sheet:		
7	273	305	End:	29.11.12	2	1	0.90)		E:3562	254.3 N:	170911.3		4	of 7
		Sample	s & Testing	Mech	nanical	Log	11 & 1- ion	15					pec ed	Depth	Material
Depth (m)	No		Results	TCR SCI	RQD (%)	If (mm)	Backfil Instru mentat	Water		Descr	iption of St	rata	Reduced Level	(Thick ness)	Graphic Legend
7.50-8.00 - - - 8.00-8.45	24	SPT	4,5/6,9,14,14 N=43										-	(2.50)	
8.50-9.50	25	В											-	- - -	
9.50-9.92	26	SPT	5,8/11,12,16,11 for 40mm N=57*						sligi extr fine	ntly sandy emely weak to medium n ERCIA MUI	CLAY wingulandstone lit	ed grey greer th occasional ir to rounded horelicts. GROUP Zone		9.50	
Вс	ring	Progres	s and Water Obs	servations			Chise	lling	/ Slov	v Progress			D		

	Boring P	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	General Remarks
Date	Time	Borehole	Casing	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General Remarks
	Depth Depth (mm) De				Берш				
Made			Di		1 2000		Dellad	A.Y	All dimensions in metres Scale: 1:14
Used:	Method Cable Percussion + Plant Dando 20 Jsed: Rotary Cored Used: Comacchio						Drilled By:	AL+ LH	Logged BSaimen + Checke By: EBall By: AGS

GINT_LIBRARY V8 04.GLB/Log COMPOSITE LOG | 727305_BRISTOL_RAPID_TRANSIT.GPJ - v8 04 | 29/10/13 - 18:06 | KJ.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

110													JUK		OLI		UG
Contract:							Cli	ient:							Boreho	le:	
Bristol R	apid '	Transit	Ashton Vale	о Тетр	ole Me	eads				Bris	stol City	Cou	uncil			В	H517
Contract Ref	:		Start	26.1	1.12	Grou	ınd L	evel (m	AO	D):	National G	rid Co	-ordinate:		Sheet:		
7	1273	305	End:	29.1	1.12			10.90			E:356	<u> 254</u>	3 N:1709	911.3		5	of 7
Depth (m)	No	Sample: Type	s & Testing Results		SCR	RQD	Log	Backfill & Instru- mentation	Water		Desc	ription	of Strata		Reduced Level	Depth (Thick ness)	Material Graphic Legend
10.00-11.00		В		(%)	(%)	(%)	(mm)	II. III							-	(2.00)	
11.00-11.37	28	SPT	4,7/12,15,2. for 70mm N=68*												-	-	
11.50-12.60 11.50-11.70 11.70		CS HP	c _u =>225	1			1			brov lenti sand subl subl	vn cular/irregu lstone up norizontal. norizontal c	SILTS dar gree to 50 losely		with one/fine lding is fractures	-0.60	11.50	X X X X X X X X X X X X X X X X X X X
12.00-12.10	30	CS		100	68	7	NI 250 400			very (cor und	between 11 stiff/hard appletely wea at 11.98m culating. between	DSTON .70 to reddish athered depth b 12.00 irregul	edding fract 0 to 12.15r lar shaped	h bed of ady clay ure is 5° m depth	-	(0.90)	× × × × × × × × × × × × × × × × × × ×
12.40-12.60	31	CS								stiff		own si	12.40m de lty clay (con		-1.50	12.40	× × × × × × × × × × × × × × × × × × ×
R	oring	Progress	s and Water O	hservat	ions			Chice	lling	/ Slov	v Progress					. ()	

		Date Time Depth Depth Diam (n					Chisel	ling / Slow	Progress	General	Damai	rlza	
	Date	Time			Borehole Diameter	Water	From	То	Duration (hh;mm)	General	. Kemai	KS	
-			Depth	Depth	(mm)	Depth			(1111.111111)				
1							<u> </u>			All dimensions in metre	s Scale:	1:14	
	Method Used:		ercussion + y Cored	Plan Used		ando 2000 - acchio MC		Drilled By:	AL + LH	Logged BSaimen + By: EBall	Checke By:		AGS

GINT_LIBRARY V8 04.GLB/Log COMPOSITE LOG | 727305_BRISTOL_RAPID_TRANSIT.GPJ - v8 04 | 29/10/13 - 18:06 | KJ.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:						C	lient:		Borehole:
Bristol Rapi	id Transit A	Ashton Vale to	Templ	e Me	ads				Bristol City Council BH517
Contract Ref:		Start:	26.11	.12	Grou	ınd I	Level (m	AO	D): National Grid Co-ordinate: Sheet:
72	7305	End:	29.11	.12			10.90		E:356254.3 N:170911.3 6 of 7
	Samples	& Testing	N	1echa	nical	Log	1 & ion		ਲ੍ਹੇ ਹ Depth Material
Depth (m) N	lo Type	Results	TCR (%)	SCR (%)	RQD (%)	If (mm	Backfill & Instru- mentation	Water	Description of Strata
12.60-14.00	2 CS		100	68	7	*			Weak reddish brown SILTSTONE with extremely closely spaced lenticular thick laminations/very thin beds of green grey fine sandstone. (MERCIA MUDSTONE GROUP Zone I) Very weak locally extremely weak reddish brown SILTSTONE with rare lenticular/irregular greenish grey fine sandstone. Bedding fractures are 5 to 10° closely to medium spaced undulating rough infilled with red clay.
13.65	НР	c _u =175/175	100	89	82	NI 150 340)		(MĒRCIA MUDSTONE GROUP Zone I) at 12.82m depth bed of clay up to 30mm. at 13.17m depth bedding fracture 5° undulating rough open with fractured upper wall rock. at 13.35m depth fracture is 10° undulating rough open with fractured lower wall rock. between 13.40 to 13.50m depth occasional irregular greenish grey siltstone below 13.50m depth siltstone extremely weak. below 13.70m depth siltstone becomes very weak between 13.78 to 13.85m depth bed of
13.90-14.00 3.	CS CS		*	\ \ \	<u> </u>	 			weak greenish grey siltstone. X X X X X X X X X X X X X X X X X X
14.40-14.55 3- 14.50-14.75 2-		17,8/100 for 70mm N=429*	73	73	73	NI 500 110)		ZCL between 14.40 to 14.70m depth lenticular and irregular greenish grey siltstone up to 50mm.
- - -		1. 12							Extremely weak thinly laminated reddish brown silty MUDSTONE with rare lenticular/irregular greenish grey siltstone up to 15mm. Bedding fractures subhorizontal medium spaced rough. (MERCIA MUDSTONE GROUP Zone I)

ſ		Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Canaral I	lamar	1-0	
	Date	Time	Borehole	Casing	Borehole Diameter	Water	From	То	Duration (hh:mm)	General F	Cemai	KS	
F			Depth	Depth	(mm)	Depth			(
										All dimensions in metres	Scale:	1:14	
[ando 2000	+	Drilled	AL+	Logged BSaimen +	Checke			
- []	Used:						300	By:	LH	By: EBall	By:		AGS

GINT_LIBRARY V8 04 GLBILOg COMPOSITE LOG | 727305_BRISTOL_RAPID_TRANSIT.GPJ - v8 04 | 29/10/13 - 18:06 | KJ.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

•						
Contract:			Client:		Boreho	
Bristol Rapid Transit	Ashton Vale to Te	emple Meads		Bristol City Council		BH517
Contract Ref:	Start: 26	6.11.12 Groun	nd Level (m AOI		Sheet:	
727305	End: 29		10.90	E:356254.3 N:170911.3		7 of 7
					p _e l	Depth Material
Depth (m) No Type	Results To	Mechanical I CCR SCR RQD (%) (%) (%)	Backfill & Bornstru- Instru- mentation Water	Description of Strata	Reduced Level	(Thick Graphic Legend
15.23-15.50 35 CS			NI 500 1100 1	Borehole terminated at 15.50m depth.		16.00

	Boring Pr	ogress and	Water Ob	servations		Chisell	ing / Slow	Progress	Canaral	Damas	n1-a	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth	From	То	Duration (hh:mm)	General	Kemai	IKS	
	 	Depui	Depui	(mm)	Depui							
									All dimensions in metres	Scale:	1:14	
Method Used:					ando 2000 - acchio MC		Drilled By:	AL + LH	Logged BSaimen + By: EBall	Checke By:		AGS

GINT_LIBRARY_V8_04.GLB!Log COMPOSITE LOG | 727305_BRISTOL_RAPID_TRANSIT.GPJ - v8_04 | 29/10/13 - 18:06 | KJ.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB_Tel 10117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

GINT_LIBRARY V8_04.GLB1Log_TRIAL_PIT_LOG - STANDARD|727305_BRISTOL_RAPID_TRANSIT_GP1 - v8_04|29/10/13 - 11:56 | K1.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Method Used: Plant Used:

Machine dug

JCB-3CX

TRIAL PIT LOG

Contract: Bristol F Contract Ref												
							Client:		C 9	Trial P		CD <00
Contract Rei		Transit	Ashton Vale t					stol City		GI.]	P608
			Star	t: 29.1		Groun	d Level (m AOD):		id Co-ordinate:	Sheet:		
	7273	305	End	29.1	1.12	<u> </u>	10.14	E:3561	138.3 N:170920.7		1	of 2
Sam	nples a	and In-sit	u Tests	Water	Backfill		Des	scription of S	trata	Reduced Level	Depth (Thick	Materia Graphi
Depth	No	Type	Results	W.	Вас		Des	scription or s	onata	Red	ness)	Legen
0.20	1	В				grave	elly CLAY. Gravel	is angular to	wn slightly sandy slightly subangular fine to medium nal plastic bags noted.	-	(0.50)	
0.20	2	ES					1m long section of bri	ick wall recov	vered at 0.30m depth.	9.64	0.50	
						claye	DE GROUND: Lar ey sand, bricks, con , ash and rope.	ndfill material crete, tiles, v	I comprising a mixture of wood, metal poles, plastic	-	-	
1.00 1.00	3 4	B ES					slightly hydrocarbon	odour at 1.00	m depth.	- - - -	(1.10)	
						& clave	DE GROUND: Lar ey sand, melange of spaper, occasional bri	wooden board	l comprising a mixture of ds, chipboard, plastic bags, ete.	8.54	1.60	
2.00 2.00						 hydr	. pocket of black ocarbon odour.	stained clay	at 2.00m depth. Strong	- - - -	(1.10)	
						Trial	pit terminated at 2.70	Om depth.		7.44	2.70	
										-	-	
										-	-	
Plan (Not to Scale)							(General	Remarks		_	
0.80	0	2. 7	rial pi	t dry an	scanned prior to exca d stable. illed on completion.							
						All	dimensions in metres		Scale:	1:25		

Logged By:

REWilliams

Checked By:

GINT_LIBRARY V8_04.GLB1Log_TRIAL_PIT_LOG - STANDARD|727305_BRISTOL_RAPID_TRANSIT_GP1 - v8_04|29/10/13 - 11:56 | K1.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

TRIAL PIT LOG

Contract:				Client:		Trial Pit:			
Bristol Rapid Transit Ashton	Vale to T	emple Mea	ds	Bri	stol City Council			TP	608
Contract Ref:	Start: 29.11.12 Ground			d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
727305	End: 2	29.11.12		10.14	E:356138.3 N:170920.7		2	of	2

TP608 Pit

TP608 Spoil

Method Used: Machine dug Plant Used: JCB-3CX Logged By: REWilliams Checked By:

GINT_LIBRARY V8_04.GLB1Log_TRIAL_PIT_LOG - STANDARD|727305_BRISTOL_RAPID_TRANSIT_GP1 - v8_04|29/10/13 - 11:56 | K1.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Method Used: Plant Used:

Machine dug

JCB-3CX

TRIAL PIT LOG

Control							1	Cliante			Twict D		.00
Contract:		m :		7 7	an ·		,	Client:	istal Cit-	Council	Trial P		Րⅅ∠ՈՐ
Bristol F		Transit	Ashton \					l Level (m AOD):	istol City	d Co-ordinate:	Sheet:	J	ГР609
Contract Ref		205		Start:			Ground				Sneet.	1	
	727			End:	29.1	1		11.14	L:3562	24.3 N:170910.5	 TS	1	of 2
Sam	ples a	and In-sit	tu Tests Resi	ults	Water	Backfill		De	escription of St	rata	Reduced Level	Depth (Thick ness)	Materi Graph Legen
								DE GROUND: Gra DE GROUND: Firm		OPSOIL of sandy CLAY		0.10	
0.50		D										(0.70)	
0.50 0.50	1 2	B ES									10.34	0.80	
1.00	3 4	В					MAD claye metal	y/silty/gravelly mel	Landfill materia ange of brick,	al comprising of reddist concrete, tiles, plastic and	n d	-	
1.00	4	ES									-	(0.70)	
							MAE dome		Landfill n	naterial comprising o		1.50	
											9.14	(0.50)	
							packa Trial	. at 2.00m depth aging strips. pit terminated at 2.	large sack ~21	m in length of polythen	e] _	-	
												-	
												-	
											-	- - -	
												- - -	
											-	- - -	
											-	- - -	
												-	
											-	-	
Plan (Not to	Scale	e)							General 1	Remarks			
2. Trial p			t dry and	scanned prior to exe d stable. lled upon completio									
							All d	limensions in metre	, 1	Scale:	1:25		
				_						20010.			

Logged By:

REWilliams

Checked

TRIAL PIT LOG

Contract:			Client:		Trial Pit:				
Bristol Rapid Transit Ashton Vale to Temple Meads			Bristol City Council				TP	609	
Contract Ref:	Start:	29.11.12	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
727305	End:	29.11.12		11.14	E:356224.3 N:170910.5		2	of	2

TP609 Pit

TP609 Spoil

Method Used: Plant Used: Logged By: JCB-3CX Machine dug

REWilliams

Checked

By:

GINT_LIBRARY V8_04.GLB1Log_TRIAL_PIT_LOG - STANDARD|727305_BRISTOL_RAPID_TRANSIT_GP1 - v8_04|29/10/13 - 11:56 | K1.
Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Appendix E Recommendations for Ground Investigation

		Route Option B: Draft Ground Investigation Scope (Ta	able 1 of 2)
GI Area	Structure	Aims of GI	Outline Scope for GI
1	New bridge abutments over Longmoor Brook	 Obtaining a ground model, groundwater model and engineering parameters for the purpose of designing a retaining structure; Obtain controlled environmental samples for the purpose of environmental classification. 	 For geoenvironmental aspects associated with engineering over/adjacent/through landfill, it may be necessary to acquire and test further groundwater, gas, or soil sampling. Either: The existing instrumentation (installed as part of AVTM) can be reinstated or; Further (replacement) instrumentation will be needed. For the purpose of the Draft GI
2	Filled abutment and highway over existing landfill (South abutment to Longmoor Brook crossing.)	 Obtaining a ground model, groundwater model and engineering parameters for the purpose of designing/analysing an earth abutment; Obtain controlled environmental samples for the purpose of environmental classification. 	Scope assume it will be necessary to replace instrumentation: 3No. boreholes to ~20m with groundwater and gas monitoring; 4 to 6No. trial pits For engineering parameters, the assumption is that there is sufficient ground investigation
3	At grade highway over existing landfill (Parallel to and south of Longmoor Brook.)	 Obtaining a ground model, groundwater model and engineering parameters for the purpose of at grade highway; Obtain controlled environmental samples for the purpose of environmental classification. 	from the previous (AVTM) ground investigation. This is a reasonable assumption but is dependent upon complexity/ sensitivity of the final design. Should the design require further information/testing, this can be acquired from boreholes listed above (and prescribed for geoenvironmental definition).
4	At grade highways and junction improvement	 Obtaining a ground model, groundwater model and engineering parameters for the purpose of at grade highway; Obtain controlled environmental samples for the purpose of environmental classification. 	4 to 6 trial pits;CBR testing.

Route Option B: Draft Ground Investigation Scope (Table 2 of 2)

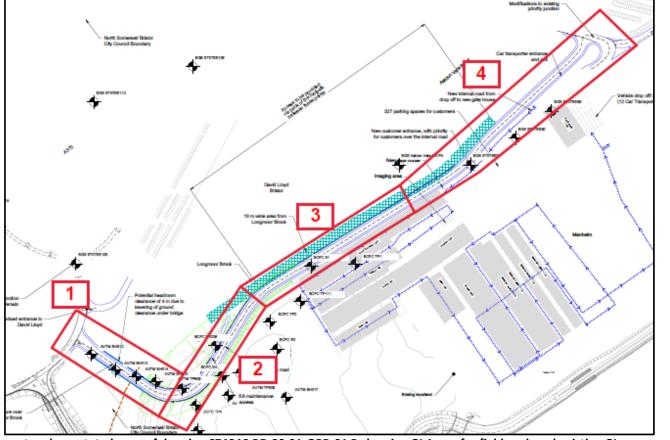
Summary	of G	Scope.
Julillial	UI U I	JUDE.

Further Study

The following studies are recommended ahead of Fieldwork:

Detailed UXO assessment;

Coal Mining Risk Assessment (CMRA).


Fieldwork

Prior to exploratory (trial pit and borehole) investigation the following work is recommended:

- Geophysics Survey: There is a risk of undetected mine entries in the area which may result in subsidence or collapse. A CMRA will inform the nature of the fieldwork, however ahead of a CMRA, the following work is assumed as a minimum requirement:
 - Geophysical survey over the footprint of the project (allowance 3 days). Anticipated to be electrical resistivity magnetic methods and/or ground penetrating radar;

Subject to further study and a geophysical survey the GI is assumed:

- 3No. Boreholes:
 - o to 30m depth;
 - o Instrumentation to all boreholes;
 - Weekly monitoring of gas and groundwater over 6 weeks;
 - o Associated field testing, sampling and laboratory testing for engineering and geoenvironmental sampling;
- 8 12No. Trial pits:
 - Allowance 3 days;
 - Assume to 3m depth;
 - o Associated field testing, sampling and laboratory testing for engineering and geoenvironmental sampling.

Excerpt and annotated copy of drawing 674946.BD.29.01-OPB-01 B showing GI Areas for fieldwork and existing GI.

Notes

- 1. The outline ground investigation (GI) scope presented herein is to enable the progression of the design for the major structures and earthworks for the proposed Route Option summarised by Section 8 of the Preliminary Sources Study Report. The GI scope also considers what environmental sampling is necessary to further the definition of risk with respect to contaminated land (refer to Section 6 of the Preliminary Sources Study Report);
- 2. The scope of the GI is based upon scheme design and should be revised as the design progresses;
- 3. A need for further more specific ground investigation items may become apparent during later stages of the design for instance, inspection of existing services, assets and infrastructure, sensitivity of the design, potential hotspots of contamination, bridge inspection, etc.;
- 4. The outline ground investigation (GI) scope assumes that the stability and integrity of existing slopes are sound;
- 5. It is assumed that all previous geotechnical information for the Ashton Vale to Temple Meads (AVTM) Metrobus scheme, between 2010 and 2013 for the West of England Partnership / Bristol City council will be available and can be used for the purpose of the design. This allows economies in the scope of the GI which are reflected in the Draft Ground Investigation Scope (above). Should this not be possible, then the Scope will need to be increased.

	Route Option C: Draft Ground Investigation Scope (Table 1 of 2)							
GI Area	Structure	Aims of GI	Outline Scope for GI					
1	New Retaining Structure An earthworks solution may be feasible. At present the Outline Scope for GI is based upon a retaining wall solution.	 Obtaining a ground model, groundwater model and engineering parameters for the purpose of designing a retaining structure; Obtain controlled environmental samples for the purpose of environmental classification. 	 2No. boreholes to ~25m (at the top and bottom of the embankment); Piezometer installations and subsequent groundwater and/or gas monitoring; ~4 to 6No. trial pits; Associated laboratory testing for classification and engineering properties. 					
2	New Slip Roads Assumes minimal disruption to the existing highway embankment and highways new highways to be at grade or no more than (say) 1.5m fill and nominal cut).	 Obtaining a ground model, groundwater model and engineering parameters for designing new slip roads highways; Obtain controlled environmental samples for the purpose of environmental classification. 	 2No. boreholes to ~15m; Piezometer installations and subsequent groundwater and/or gas monitoring; 8 to 10No. trial pits; Associated laboratory testing for classification, engineering properties. 					
3	Ramp Approach/ David Lloyd Gabion Existing gabion wall presents a 'pinch point' between the proposed existing highway of ~10 to 12m in plan.	 To assess the as-built detail of the existing gabion (depth to foundation); To enable an assessment the stability of the existing retaining structure (gabion) due to the new slip road to the crest; Obtain controlled environmental samples for the purpose of environmental classification. 	 1No. borehole to the crest of the slope (behind the gabion) to ~20m; Piezometer installation and subsequent groundwater and/or gas monitoring; 3 to 4No. trial pits; Associated laboratory testing for classification, engineering properties. 					
4	'Drop Off' Two options are being considered either: a piled solution (for an elevated highway), or; a filled embankment. It has not been possible to inspect this area of site. Inspection is necessary prior to establishing a scope for the ground investigation	 To evaluate ground risk associated with the existing slopes; To facilitate an engineered solution (either piling or embankment); Obtain controlled environmental samples for the purpose of environmental classification. 	Walkover and geomorphological studies will be necessary and will inform the GI (refer to Section 10 of the Preliminary Sources Study Report for recommendation). Ahead of this, the following scope is estimated: • 4No. boreholes to ~25m/30m (at the top and bottom of the existing slopes); • 2No. boreholes to the footprint of the highway to ~25m; • Piezometer installations and subsequent groundwater and/or gas monitoring; • 4 to 6No. trial pits; • Associated laboratory testing for classification and engineering properties.					

Route Option C: Draft Ground Investigation Scope (Table 2 of 2)

Summary of GI Scope:

Further Study

The following studies are recommended ahead of Fieldwork:

Detailed UXO assessment;

Coal Mining Risk Assessment (CMRA).

Fieldwork:

Prior to exploratory (trial pit and borehole) investigation the following work is recommended:

- <u>Geomorphological Walkover Survey</u>: access to and inspection of the existing slopes, landform and geological exposures of the area. The following scope is envisaged:
 - 1 day's attendance and inspection by 2No. geologists/geological engineers;
 - o Reporting and assessment of risk, recommendation with respect to existing condition and further studies/ground investigation:
- <u>Geophysics Survey</u>: There is a risk of undetected mine entries in the area which may result in subsidence or collapse. A CMRA will inform the nature of the fieldwork, however ahead of a CMRA, the following work is assumed as a minimum requirement:
 - Geophysical survey over the footprint of the project (allowance 3 days). Anticipated to be electrical resistivity magnetic methods and/or ground penetrating radar;

Subject to further study and a geophysical survey the GI is assumed:

- 11No. Boreholes:
 - o to 20m depth;
 - o Instrumentation to all boreholes;
 - Weekly monitoring of gas and groundwater over 6 weeks;
 - Associated field testing, sampling and laboratory testing for engineering and geoenvironmental sampling;
- 20-25No. trial pits:
 - Allowance 5 days;
 - Assume to 3m depth;
 - Associated field testing, sampling and laboratory testing for engineering and geoenvironmental sampling

Note that the state of the stat

Excerpt and annotated copy of drawing 674946.BD.29.01-OPC-01 A showing GI Areas for fieldwork and existing GI.

Notes:

- 1. The outline ground investigation (GI) scope presented herein is to enable the progression of the design for the major structures and earthworks for the proposed Route Option summarised by Section 8 of the Preliminary Sources Study Report. The GI scope also considers what environmental sampling is necessary to further the definition of risk with respect to contaminated land (refer to Section 6 of the Preliminary Sources Study Report);
- 2. The scope of the GI is based upon scheme design and should be revised as the design progresses;
- 3. A need for further more specific ground investigation items may become apparent during later stages of the design for instance, inspection of existing services, assets and infrastructure, sensitivity of the design, potential hotspots of contamination, bridge inspection, etc.;
- 4. The outline ground investigation (GI) scope assumes that the stability and integrity of existing slopes are sound;
- 5. It is assumed that all previous geotechnical information for the Ashton Vale to Temple Meads (AVTM) Metrobus scheme, between 2010 and 2013 for the West of England Partnership / Bristol City council will be available and can be used for the purpose of the design.

Appendix F CH2M (2016) Technical Note

Metrowest Ashton Gate level crossing closure – high level review of geotechnical and geo-environmental issues for proposed alternative access route.

PREPARED FOR: R Rosenberg / A Seek

COPY TO:

PREPARED BY: Mike Floyd

DATE: February 9th 2016

PROJECT NUMBER: 467470.BQ.04.22

REVISION NO.: Draft A

APPROVED BY:

Executive Summary

This high level review of two proposed alternative access routes to the Ashton Gate Trading Estate is based on previous assessments made for the nearby Ashton Vale to Temple Meads Metrobus scheme. Significant ground constraints are identified including: a potential mine shaft at or near to the ETS waste transfer station at the western end of the route with treatment and exact location not known; the route crosses or is very close to two landfill sites containing mixed waste and compressible materials, and crosses floodplain that comprises soft compressible alluvium and possibly peat. Recommendations are made for further assessment and ground investigation should the scheme proceed.

Introduction and Objectives of this Note

The Metrowest scheme proposes the closure of the Ashton Gate level crossing on the Portishead line, located off the A3029 Winterstoke Rd in south west Bristol. Options are being considered for an alternative access road to the Ashton Gate Trading Estate.

This note provides a high level geotechnical review of an alternative access road option which may also include a proposed area of compensatory land for the Manheim Car Auction site. Also included is a brief assessment of the likely requirements for additional ground investigation

This review is based primarily on geotechnical information obtained by CH2M for the Ashton Vale to Temple Meads (AVTM) Metrobus scheme, between 2010 and 2013 for the West of England Partnership / Bristol City Council. This included a geotechnical desk study and supervision of a large ground investigation (GI) undertaken by Structural Soils Ltd. The AVTM scheme is currently under construction under a design and build contract by Balfour Beatty. No information has been obtained for this assessment from any ground investigations that have been undertaken in the area since 2013, nor from the ongoing BB construction activities.

Associated issues such as utilities, land access permission, public rights of way, flood risk, environment and ecology, are not included in this assessment. A geotechnical walkover of the site has not been made, although most of the area has previously been visited prior to current AVTM construction. This note does not replace the requirements for a geotechnical walkover, a full geotechnical desk study and a contaminated land risk assessment. A Designers Risk Assessment and geotechnical risk register should be completed should the scheme proceed further.

METROWEST ASHTON GATE LEVEL CROSSING CLOSURE – HIGH LEVEL REVIEW OF GEOTECHNICAL AND GEO-ENVIRONMENTAL ISSUES FOR PROPOSED ALTERNATIVE ACCESS ROUTE.

Proposed Scheme

There are currently two options for proposed alternative access:

Option 1. Through Manheim Car Auctions

This is shown on the following sketches:

- Drawing 467470.BQ.04.20-SK702 Rev A (dated 08/01/16), titled as 'Option 1'
- Two hand annotated sketches amending the above drawing to show alternative layouts for the revised Manheim Car Auctions site
- Drawing 467470.BQ.04.20-730 Rev A (dated 11/12/15) showing the proposed road alignment to the west of the car auctions site.

In summary the scheme comprises from west to east:

- A revised layout with the new access road starting at the junction of the Long Ashton Park and Ride road and David Lloyd sports centre access road.
- The road heading southeast over Longmoor Brook and New Colliters Brook immediately upstream of their confluence, with a curved bridge.
- The road continuing parallel to Longmoor Brook on the south side of the brook and along the northern edge of the historic landfill site before entering the Manheim Car Auctions site in the northwest corner.
- Crossing the northern edge of the car auctions site through current forecourt car parking areas
- Crossing the culverted Longmoor Brook and joining onto Ashton Vale Road
- Providing an area of alternative auction site for vehicle drop-off and storage along the eastern side of the Ashton Field landfill site, exact area to be confirmed

Option 2. Through ETM Waste Transfer Station

The waste transfer station location is shown as a sketch on an air photo.

The route is that same as above but instead of the road entering the Manheim Car Auctions site on the south side of Longmoor Brook, the road re-crosses Longmoor Brook between the Car Auction site and the David Lloyd sports centre and goes through a current waste transfer station owned by ETM, to join near to the western end of Ashton Vale Road.

Site Description

The site is in the wide, level base of the SW-NE orientated valley of Ashton Vale with drainage running northeastwards. Natural drainage is poor, with soft, boggy ground found where the land has not been artificially raised or drained.

The valley to the southwest is used for grazing or is untended wetland. There is a park and ride and sports centre on the slopes on the north side and housing and allotments on the slopes to the south. The Ashton Gate and Cala trading estates are to the east.

The site of the historic landfill site, is elevated in its centre and slopes towards the watercourses of Longmoor Brook to the north, New Colliters Brook to the west and Old Colliters Brook to the south. The landfill has a clay and topsoil cap and is grassed.

Manheim Car Auctions site is generally level and appears to be on a slightly raised platform and mostly paved with asphalt.

Longmoor Brook is channelised and raised slightly above the valley bottom. Large concrete structures are present on the north side of the auction site just before the brook goes into culverts running north-eastwards beneath Ashton Gate and towards the tidal River Avon New Cut.

Site History

The area has a long history of development and changes to the ground profile summarized in Table 1 based primarily on an Envirocheck Report, which included historic OS mapping, obtained for the AVTM desk study in 2012. The historic mapping provides very little information about the development of the landfill sites.

TABLE 1
Summary of Site History

Date	Development Details
1840s (Tithe Map)	Northern part of site north of Longmoor Brook is off the map
	 Longmoor Brook and Old Colliters Brook shown at approximate current location. Predominantly agricultural land with field boundaries. 3 houses to east in current trading estate area
	Coal pits shown to south and east.
1886-1890 (1st Edtn OS)	 Ashton Vale Works (shown variously as Iron Works, Brick and Coke) on north side of Longmoor Brook including clay pits to north and west, coke ovens and factory buildings in centre, colliery to east, railway lines in centre and east, and possible spoil heal to south along northern bank of Longmoor Brook.
	Ashton Brook flowing west to east north of Longmoor Brook
	Frayne's Colliery (disused) shown on south side of brook in current trading estate area
	Housing to north east and Kennel Farm to north
1900 - 1918	 Larger spoil heap alongside Longmoor Brook and larger clay pit to north Colliery on north side now labelled "Old Colliery" suggesting disused
	 Allotment gardens around former Frayne's colliery
	Ashton Brook becomes partially culverted
1930 - 1932	Ashton Vale works now described as brick and tile works with kilns shown
	Allotments are now Saw Mills
	Sign of raised filling in SE corner of landfill site
	Marshy ground shown around Longmoor Brook
1946 Air Photo	Possible labour or military camp occupying site of current car auctions site
	Filling in SE corner of Ashton Fields landfill
	Coke and brickworks appear to be disused and overgrown
1948-54	Tanks labelled at sides of some buildings in labour camp
	 Saw Mills expanded and timber yards and joinery works make up eastern half of current trading estate
	 Warehouse labelled as Ministry of Works present on current southern half of Manheim Car Auction site. Raised land indicated on edge of brook for development platform
1963	 Construction of Ashton Vale Rd and trading estate with separate units, depots and builders yard shown on north side of Longmoor Brook. Raised land indicated around edge of trading estate for development platform
	 Large depot constructed at Manheim Car Auctions plot replacing previous camp, labelled "National Assistance Board Offices" (HM Stationary Office in 1974) and vehicle testing centre in NW corner (1974)
1969-1970	A370 Brunel Way reprofiled to north with new junctions. Kennel Farm demolished.
	Depot shown at current ETS site, with tanks
1987-1989	ETS site new buildings (1983)
	 Longmoor brook has been channelised with straight channel and regular side slopes and culvert construction. New Colliters Brook constructed
1994-1996	Park and Ride developed in phases commencing after 1991 and before 1999.
	Fitness centre constructed
2006	Manheim car auctions possibly developed between 1999 and 2006

Geology

A summary geological map from the AVTM Envirocheck Report is provided in Figure 1. Generally ground investigation in the area for the AVTM scheme has confirmed the findings of desk study work.

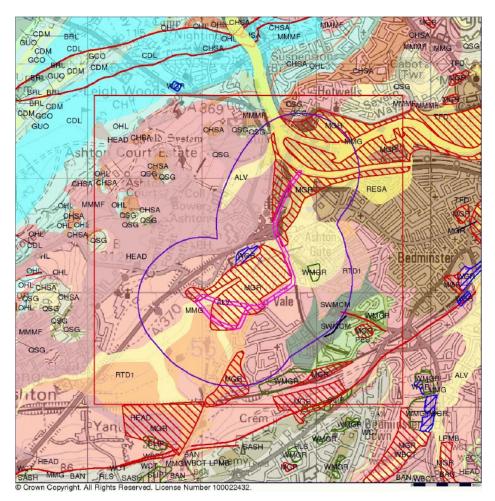


Figure 1. BGS Geological Map for site extracted from AVTM Envirocheck report (2012)

Note red hatching indicates made ground such as landfill, earthworks, land raising

In summary, the Ashton Fields area typically comprises landfill (at the Long Ashton Park and Ride site and raised land south of Longmoor Brook at the 'Northern Fields' landfill site) or made ground of colliery spoil and iron works ash and clinker raised above existing floodplain (at the Ashton Vale Trading Estate), overlying soft alluvium, possibly with a desiccated crust and lenses of sand. Where there has been no artificial land raising, alluvium is located at surface in the valley bottom. The area can be difficult to access by wheeled vehicle. The alluvium may overlie thin River Terrace Deposits (sand and gravel).

Beneath the alluvium, Mercia Mudstone is present with occasional sandstone bands. The Mercia Mudstone unconformably overlies steeply dipping Coal Measures strata, with historic coal mining beneath the site. The area has a high groundwater level with occasional artesian water pressures encountered.

The Mercia Mudstone Group is expected to be encountered across the site beneath Made Ground and superficial deposits of Alluvium (predominantly clays and silts with some sand), possibly overlying. The Mercia Mudstone Group unconformably overlies steeply dipping Coal Measures strata that contain coal seams that have been worked. Historically there were several coal mines in the

area, and the former coal mine spoil and development platforms that raised the mines above the floodplain now form the site of the current trading estate and Manheim Car Auctions site.

Close to the site to the northeast and underlying much of the Ashton Gate trading estate, the Redcliffe Sandstone Member of the Mercia Mudstone Group predominates. The Mercia Mudstone Group has been differentiated between CIRIA C570 weathering Zones IVb and IVa, where the Mercia Mudstone generally resembles a stiff to very stiff CLAY, and Zones I to III, where the degree of weathering is less and the lithology is generally described as MUDSTONE interbedded with SILTSTONE or SANDSTONE beds (Table 2).

TABLE 2
Mercia Mudstone Group Weathering Grades (after CIRIA C570)

Weathering Zone	Generalised Geological Description				
MMG Zone IVb and IVa	Stiff to very stiff reddish brown slightly sandy silty CLAY.				
MMG Zone III to I	 Very stiff reddish brown silty/sandy CLAY. 				
	 Extremely weak to weak thinly laminated to medium bedded reddish brown silty MUDSTONE. 				
	 Very weak to weak thinly to thickly laminated reddish brown clayey SILTSTONE. 				
	 Very weak to medium strong thinly to medium bedded reddish brown fine grained SANDSTONE. 				

Existing Ground Investigation Results

There are two main sources of previous ground investigation data:

- Ashton Vale to Temple Meads Metrobus Scheme Ground Investigation (Structural Soils Ltd, 2013).
- Bristol City Football Club (BCFC) proposed stadium development, various ground investigations, summarized in Table 3. Much of this data has not been made available and a detailed review has not been made. Our assessment of this data is limited to the findings of the WSP environmental statement by WSP (2008).

A detailed assessment of the available information has not been made at this stage and is recommended should the scheme progress.

TABLE 3

Summary of Existing Ground Investigation Reports – Proposed Stadium Area

Title	Date	Author	Comment
Bristol City FC Ashton Vale Site Assessment. Geo- Environmental Interpretive Report	8 th June 2009	URS	Issue No. 2 Ref 49310761/BRRP00003 Investigation made in two phases predominantly on landfill area: Aug 2008 (13 trial pits in landfill area Structural Soils Ltd); Feb-March 2009 (16 trial pits in landfill area, 10 boreholes in landfill and adjacent, 14 rotary core and open hole for shallow coal workings, 18 to 40m depth, CC Ltd). Identified coal mine workings for (probable) Bedminster Great Vein in SE corner of the site, dipping to the east, treatment recommended for stadium development. Groundwater and gas monitoring. Geotechnical and environmental sampling and testing. Report includes schematic cross sections
Appendix B to above report. Bristol Coal Mining Archive Report	Aug 2008	Bristol Coal Mining Archives Ltd	Provides details of main worked seams and pit locations Subcrop of Bedminster Great Vein marked running SW-NE across landfill area and beyond parallel and closer to Old Colliters Brook than Longmoor Brook.

TABLE 3

Summary of Existing Ground Investigation Reports – Proposed Stadium Area

Title	Date	Author	Comment
Appendix C to above report. Previous Site Information –	July 2008	WSP	8 shallow boreholes in landfill area and to SW, mainly for environmental assessment, plus surface water
WSP Investigation Appendix C to above report. Previous Site Information – WSP Investigation	April 2009	CC Ground Investigations Ltd	sampling and testing. Factual ground investigation report, April 2009 for URS
Appendix H to above report. Accelerated Investigation	Aug 2008	Structural Soils Ltd & Sever Trent Laboratories	Trial pit logs and chemical analyses.
New Stadium for BCFC. Environmental Statement Ashton Gateway Project. Chapter 10 Ground Conditions and Contamination	June 2009	WSP	References investigations by WSP (2008-09), URS (2009) and Arup (2002), plus information from the Coal Authority. Further references older investigations: Arup (1990, Haul Waste Ltd, gas monitoring), 1994 David Lloyd Tennis Centre, 2001 Structural Soils Ltd.
Preliminary Landfill Gas Assessment, Ashton Gateway Project	27 Oct 2008	WSP	Drilling and monitoring of six cable percussion boreholes, included in July 2008 reference above.
Archaeological Desk Based Assessment of land at Ashton Vale Bristol for Ashton Gateway Development	Dec 2008	Bristol & Region Archaeological Services	Report No 2024/2008. Includes pre OS mapping and aerial photography

Tables 4 to 6 summarise the ground conditions encountered during the AVTM ground investigation in 2013.

TABLE 4
Summary of Ground Conditions – Long Ashton Park and Ride and Longmoor Brook BH501, 501A, 512, 513 and 514, TP601

Thickness (m)	Depth to top of stratum (m)	Geology	General description
0.00 to 0.30	0.00	Topsoil	
1.00 to 4.00	0.00 to 0.30	Made Ground	Very soft to firm sandy gravelly CLAY to slightly clayey slightly sandy GRAVEL with ceramic, clinker, brick, limestone, sandstone, concrete, tarmac, ash and rare wood.
3.70 to 4.80	3.00 to 4.00	Alluvium	Very soft to firm slightly sandy to silty (organic in places) CLAY with occasional brown pseudo-fibrous peat.
2.10 to 7.25	7.00 to 8.00	Mercia Mudstone Group - Generally Zone IVb and IVa	See Table 1
6.50 to 11.00	10.00 to 14.50	Mercia Mudstone Group – Generally Zone I to III	See Table 1
>4.00 to >7.00	21.00	Coal Measures	Extremely weak to weak thinly laminated grey partially to distinctly weathered MUDSTONE and SILTSTONE.

TABLE 5
Summary of Ground Conditions – Ashton Fields (Off Landfill on W and SW side)
BH502, 503, 504, 505 and 506, TP602, 602A, 603, 603A, 604, 604A

Thickness (m)	Depth to top of stratum (m)	Geology	General description
0.20	0.00	Topsoil	
0.00 to 1.90	0.20	Made Ground	Very soft to firm silty to slightly sandy CLAY with occasional spongy pseudo-fibrous peat
1.10 to 5.25	0.20 to 1.90	Alluvium	Very soft to firm silty to slightly sandy CLAY with occasional to frequent spongy pseudo-fibrous peat.
1.40 to 6.20	1.10 to 5.25	Mercia Mudstone Group - Generally Zone IVb and IVa	See Table 1
4.20 to 8.50	5.85 to 11.50	Mercia Mudstone Group – Generally Zone I to III	See Table 1
> 5.00 to >14.00	12.00 to 20.00	Coal Measures	Extremely weak to weak thinly laminated grey unweathered to destructured MUDSTONE.
			0.42m and 0.30m thick coal encountered in BH502 from 19.90 to 20.32 and 21.30 to 21.60m depth: - Extremely weak to very weak dark grey black slightly gravelly distinctly weathered to destructured fine to coarse SANDSTONE made of cemented coal particles. 0.32m thick coal encountered in BH504 from 21.08 to 21.40m: - Extremely weak black vitreous COAL recovered as fine to coarse angular sandy gravel of coal.

TABLE 6
Summary of Ground Conditions – Ashton Fields (On Landfill)
BH515, 516, 517 and 518, TP608, 609 and 610

Thickness (m)	Depth to top	Geology	General description
	of stratum (m)		
0.20	0.00	Topsoil	
3.20 to 7.20	0.20	Made Ground - Landfill	Highly variable
0.00 to 3.80	3.00 to 6.50	Alluvium	
2.30 to 4.50	7.00 to 8.00	Mercia Mudstone Group – Generally Zone IVb and IVa	See Table 1
>3.00 to 7.80	10.00 to 11.50	Mercia Mudstone Group – Generally Zone I to III	See Table 1
>8.00	18.30	Coal Measures	Extremely weak to weak thinly laminated reddish grey to dark grey partially to distinctly weathered MUDSTONE. One coal seam was encountered in BH515 0.36m thick from 22.94 to 23.30m depth: Dark grey black thinly laminated vitreous COAL

Inspection of ground investigation location plans for the BCFC Stadium development shows that several boreholes have been completed close to the proposed road alignment, generally to the south through the landfill. These include URS (2008) borehole S1 which encountered 3.30m of Made Ground (landfill), then very soft to soft clay alluvial deposits to 9m depth, and then stiff becoming very stiff red brown clay (weathered Mercia Mudstone) to the base of the hole at 11.93m depth.

METROWEST ASHTON GATE LEVEL CROSSING CLOSURE – HIGH LEVEL REVIEW OF GEOTECHNICAL AND GEO-ENVIRONMENTAL ISSUES FOR PROPOSED ALTERNATIVE ACCESS ROUTE.

The British Geological Survey have a web based access to historic borehole records. One borehole dated 1958 was sunk on the northern side of the Manheim Car Auction site, (previously HMSO depot). This reported approximately 2m of ash fill over 0.75m of clay and rubble fill and then very soft alluvial clays and peat to about 7.5m depth, sandy gravel to 8.5m and stiff red clay (Mercia Mudstone) to the base of the hole at 10m depth.

Coal Mining

Table 7 summarises currently available sources of information.

TABLE 7
Summary of Coal Mining Records

Title	Date	Author	Comment
Bristol Metrobus Ashton Vale to	30/09/13	Bristol Coal	Brief letter report with hand drawn maps
Temple Meads Coal Mining		Mining	showing known shafts and coal seam
Archives		Archives Ltd	subcrops
AVTM Coal Mining Risk Assessment	04/10/13	CH2MHill	Completed as part of planning application work for the AVTM route along Cumberland Rd
Non Residential Coal Authority	23/02/2012	Coal Authority	Part of Landmark Envirocheck Report for
Mining Reports at Ashton Vale,	17/08/2012		AVTM Desk Study. Includes map of shafts
Bristol	09/11/2012		and details of shaft treatment if available.
Mine Abandonment Plans	Provided 11/05/2012	Coal Authority	Scans of historic mine plans
BCC Archive mining plans	Provided	Bristol City	Mining plans showing shaft locations but no
	01/11/12	Council	key to workings outlines
South Bristol Link Coal Mining	23/08/12	Bristol Coal	Brief letter report with hand drawn maps
Archives		Mining	showing known shafts and coal seam
		Archives Ltd	subcrops mainly to south of Ashton fields

It is important to note that the Coal Mine Risk Assessment obtained for the AVTM scheme may not cover all of the site.

Mine Shafts

Collapse of mine shafts can present a significant risk in coal mining areas. Three coal mine shafts are shown on the 1974 BGS geological map and reported in the accompanying memoirs in the Ashton Vale area:

- Ashton Vale Colliery (NGR 356560 171370)
- Frayne's Colliery (NGR 356930 171210)
- Starveall Pit (NGR 356520 170830)

The Coal Authority report shows five mine entries recorded in the area and provides a location plan and details of treatment. However, this report did not extend across all of the site. Inspection of the Coal Authority interactive viewer has identified a shaft located at or close to the ETS depot on the north side of Longmoor Brook. This is at the western end of the Ashton Vale Colliery and on the British Geological Survey online borehole records is called "Ashton Vale Old Pit". This has been further confirmed by inspection of coal mine plans. The first edition OS map (c. 1889) shows buildings in this area that may be the shaft top.

A new Coal Authority report is recommended to confirm if there are more details about this shaft, such as record of its treatment.

The shaft location is also identified on the Coal Authority interactive viewer as a Coal Authority Development High Risk Area for which a Coal Mine Risk Assessment will be required. Similar High Risk Development Areas are also present at the western end of the proposed route, close to the Long Ashton Park and Ride.

Mine Workings

Seven coal seams are recorded beneath the area (Ref Error! Reference source not found.). Stratigraphically, from shallowest to deepest, these are:

- Bedminster Top Coal (0.3-1.0m thick);
- Bedminster Great Coal (1.1m thick);
- Bedminster Little Coal (0.5m thick);
- Bedminster Toad Coal (0.6m thick);
- Ashton Top Coal (0.1-0.9m thick);
- Ashton Great Coal (0.9m thick);
- Ashton Little Coal (0.6m thick).

The seams are shown on the geological map orientated NE-SW in subcrop beneath the site.

A Coal Authority non-residential mining report was obtained as part of the AVTM study and reports the following:

- Six coal seams have been worked in the likely zone of influence of the site at shallow to 340 m depth, and last worked in 1913;
- One seam of fireclay has been worked in the likely zone of influence of the site at 310 m depth, and last worked in 1900;

The proposed route will be close to a Coal Authority Development High Risk Area at the western end close to the Long Ashton Park and Ride, and at the shaft location close to the ETS yard.

Based on the Coal Authority Interactive Viewer which does not identify the site a High Risk Development Area due to shallow workings, it is likely that the depths of workings is such that they will not pose a risk to the road construction. Based on AVTM boreholes, there is approximately 20m of cover (alluvium and Mercia Mudstone) above the Coal Measures and the seams are likely to be significantly deeper. However, a more detailed assessment is recommended to review the seam dip and subcrop in more details as there are is a recognized risk of shallow workings in the vicinity.

Landfill and Contamination Potential

The proposed route will cross the northern extent of the 'Southern Fields' historic landfill site, and possibly the 'Northern Fields' landfill site at the David Lloyd sports centre and Park and Ride area. The Environment Agency 'What's in My Backyard' website shows the following details:

- For the area south of Longmoor Brook: "Phase 3 Landfill Site at Ashton Vale" receiving waste between November 1985 and December 1991
- For the area north of Longmoor Brook: "Phase 2 Landfill Site at Parsonage Farm" receiving waste between October 1983 and June 1991

The route will be passing over or close to areas of Made Ground that include former landfill sites and industrial areas including coal, iron, coke, brick and tile manufacturer and industrial areas. The ETS site is currently a Waste Transfer Station. There is therefore likely to be contamination and landfill gas present on site. A contamination risk assessment will be required should the scheme progress further. Based on the conclusions of the AVTM Metrobus scheme, these risks should be manageable for the intended development.

To minimise landfill tax applied to the disposal of contaminated material, the proposed development should seek to minimise excavation of the ground.

Geotechnical and Geo-Environmental Issues

Below is a summary of the key issues identified from this review of available information

- Flooding from Longmoor Brook. Depending on the road alignment and elevation, raised embankments and flood protection and erosion protection to embankments may be required. If the development is on floodplain, compensatory flood storage may be required.
- High groundwater table may cause flooding of excavations. There is potential for artesian groundwater pressures in both alluvial deposits and bedrock.
- There is potential for methane gas to be present in landfill, coal mine workings, historic made ground, and peat / organic deposits;
- There are very soft and soft alluvial deposits and possibly peat present beneath the site with low CBR values, low shear strength and high compressibility with potential for differential settlement to occur. Ground treatment and geotextile reinforcement may be required depending on the design of any embankment construction and the loads to be imparted to the ground.
- Adjacent to the route on both sides of Longmoor Brook there are historic landfill sites, the
 lateral extent of which is not clearly defined and may be present beneath the road alignment.
 There is also raised land at the Ashton Gate trading estate of unknown composition, but likely to
 predominantly ash, clay and clinker fill. There is potential for soft and compressible materials
 with settlement risks and the presence of contaminated ground with additional waste disposal
 costs and possible measures required to prevent the migration of contaminants
- There is the presence of the ETS Waste Transfer station and other historic industrial
 development in the area with potential for shallow contamination. It should be noted that waste
 management licenses and designs at the waste transfer station should prevent contamination to
 the ground today.
- An historic coal mine shaft is indicated to be present in the area of the ETS waste transfer station. The exact location, size and how this shaft has been treated (backfill, capped or not treated) is currently not known. Further desk study, investigation and treatment considerations will be required to mitigate the risk of shaft collapse affecting the road.
- Variable weathering of Mercia Mudstone bedrock which may be soft to firm clay in places, causing differential settlement and affecting the depth of foundations of any structures required along the route. Also variable presence of sandstone bands / presence of the Redcliffe Sandstone unit
- Subcropping coal seams beneath Mercia Mudstone and potential for mine workings with void migration and unrecorded mine shafts; subsidence risk.
- Based on UXO assessment undertaken for the AVTM scheme, the site should be considered to have a medium risk for WWII unexploded ordnance (UXO). A detailed UXO risk assessment will be required and risk mitigation measures are likely to be necessary for excavations into materials that pre-date WWII.

Recommendations

Should the scheme proceed, the following are recommended:

- A more detailed desk study to include:
 - Attempting to obtaining information on the mine shaft in the area of the ETS waste transfer station and on the possible presence of shallow mine workings.
 - Attempting to obtain previous ground investigation data from the BCFC stadium investigations.

- Assessment of the coal subcrop geometry to assess the risk of the presence of shallow mine workings.
- Undertake a Contamination Risk Assessment for the site, including review of landfill ground investigation data.
- Undertake a detailed UXO risk assessment for the site.
- Road alignment, pavement and drainage designs should try to minimize the amount of disposal required of excavated materials.
- Ground investigation will be necessary for detailed design and is likely to include:
 - A phased mine shaft investigation that depending on access constraints may include geophysical survey, trenching and inclined boreholes.
 - A shallow coal workings investigation at any structures, such as bridge foundations requiring boreholes.
 - Geophysical survey and trenching to identify the extent of landfill each side of Longmoor Brook.

Appendix G Coal Authority Shaft Plan and Data Sheet

Issued by:

SN4 0QD

The Coal Authority, Property Search Services, 200 Lichfield Lane, Berry Hill, Mansfield, Nottinghamshire, NG18 4RG Website: www.groundstability.com Phone: 0345 762 6848

CH2M Our reference: 51001272767001
BURDEROP PARK Your reference:

SWINDON Date of your enquiry:

Date of your enquiry: 27 September 2016

Date we received your enquiry: 27 September 2016

Date of issue: 29 September 2016

This report is for the property described in the address below and the attached plan.

Shaft Plan and Data Sheets

MANHEIM AUCTIONS, 33 ASHTON VALE ROAD, ASHTON, BRISTOL, BRISTOL, BS3 2AZ I refer to the enquiry dated 27 September 2016, received 27 September 2016, in connection with the above.

As requested I enclose the mine entry data sheet(s) held for the mine entry/entries referred to.

Mine Entry Data

Shaft/adit: Shaft

Reference: 356171-001

Source: Ab plans 5033 SWR3429 SW3989 Geological Sheet 1960 Ed

1/10560 O.S Sheet 1887 1888 1938 Ed Other: Bristol

Environmental Geological Study

Colliery name: Unknown

Entry name: Ashton Vale Old Pit

Date abandoned: Unknown

Depth of superficial deposits (m): Unknown

Depth of shaft (m): 198.0

Diameter of shaft (m): Unknown

Probable adit azimuth: Not Applicable

Treatment details: Unknown

Conveyance: Not Applicable

Easting: 356381

Northing: 171169

Other information: None

Issued by: The Coal Authority, 200 Lichfield Lane,

Mansfield, Nottinghamshire, NG18 4RG

Tax Point Date: 27 September 2016

Issued to: CH2M

BURDEROP PARK

SWINDON SN4 0QD

Property Search for: MANHEIM AUCTIONS, 33 ASHTON

VALE ROAD, ASHTON, BRISTOL,

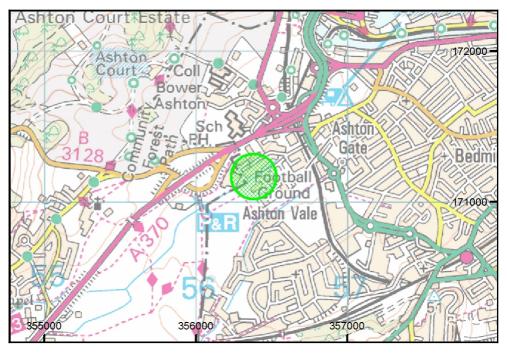
BRISTOL, BS3 2AZ

Reference Number: 51001272767001

Date of Issue: 29 September 2016

Cost: £45.50

VAT @ 20%: £9.10


Total Received: £54.60

VAT Registration 598 5850 68

Location map

Approximate position of enquiry

Reproduced by permission of Ordnance Survey on behalf of HMSO. © Crown copyright and database right 2016. All rights reserved. Ordnance Survey Licence number: 100020315

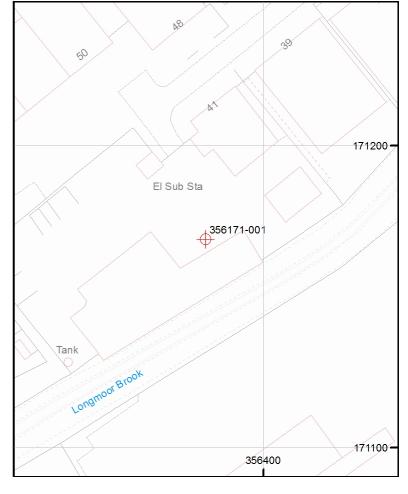
This plan shows the approximate location of the disused mine entry / entries referred to in the attached mining report. For reasons of clarity, mine entry symbols may not be drawn to the same scale as the plan.

Property owners have the benefit of statutory protection (under the Coal Mining Subsidence Act 1991). This contains provision for the making good, to the reasonable satisfaction of the owner, of physical damage from disused coal mine workings including disused coal mine entries. A leaflet setting out the rights and obligations of either the Coal Authority or other responsible persons under the 1991 Act can be obtained by visiting www.groundstability.com.

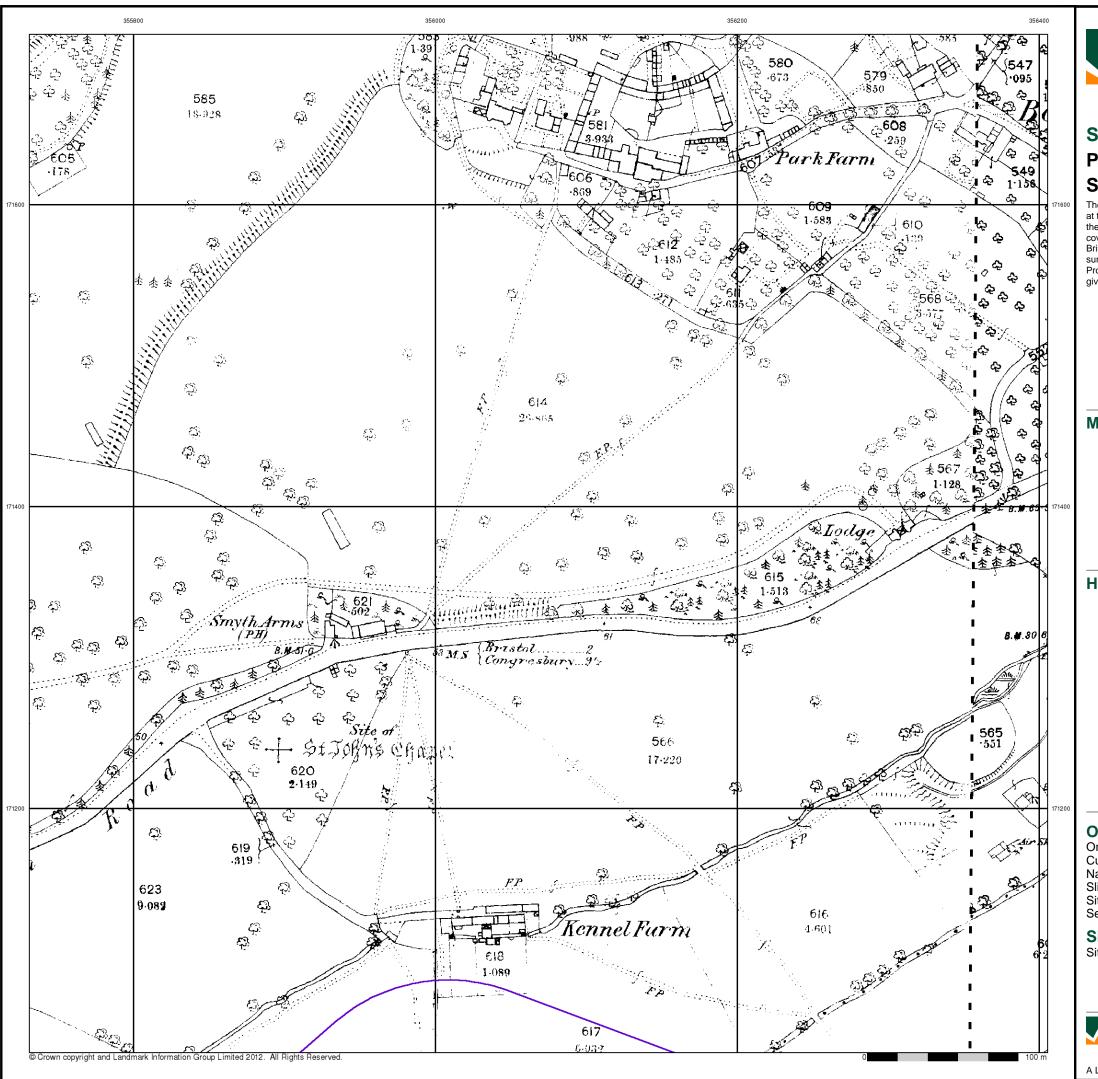
If you wish to discuss the relevance of any of the information contained in this report, you should seek the advice of a qualified mining engineer or surveyor. If you or your advisor wish to examine the source plans from which the information has been taken, these are available to view, free of charge, at our Head Office in Mansfield. To book an appointment please ring 01623 637225. Should you or your advisor wish to carry out a physical investigation that may enter, disturb or interfere with any disused mine entry, prior permission of the owner must be sought. For coal mine entries, the owner will normally be the Coal Authority.

The Coal Authority, regardless of responsibility and in conjunction with other public bodies, provide an emergency call out facility in coalfield areas to assess the public safety implications of mining features (including disused mine entries).

Our emergency telephone number is 01623 646333.


Key

Disused Adit or Mineshaft

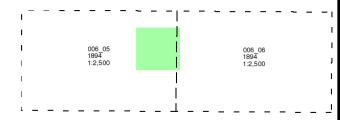


© The Coal Authority Shaft Plan and Data Sheets - 51001272767001

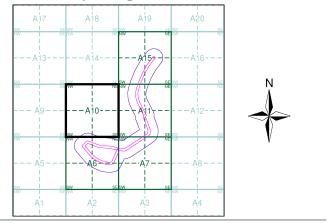
Page 4 of 4

--

Appendix H Envirocheck (2012) Historic maps



Somerset


Published 1894 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

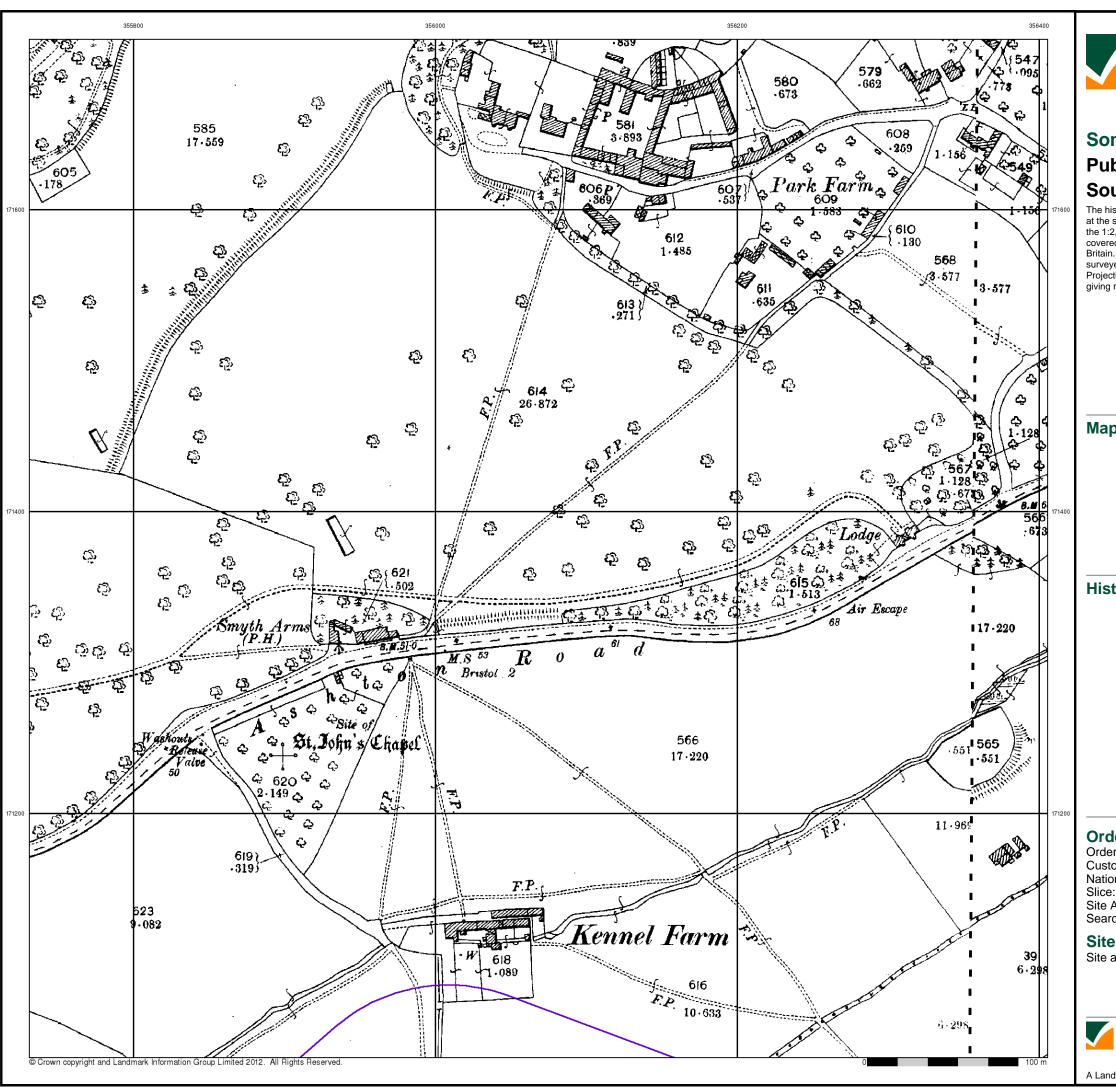
Historical Map - Segment A10

Order Details

Order Number: 37704596_1_1 GAVTMR032 Customer Ref: National Grid Reference: 356510, 171290

Slice:

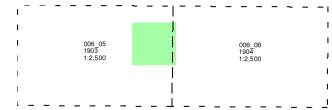
Site Area (Ha): Search Buffer (m): 7.93 100


Site Details

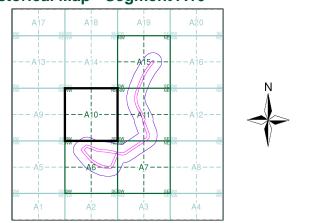
Site at, Ashton Vale, City of Bristol

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 22-Feb-2012 Page 3 of 22



Somerset


Published 1903 - 1904 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

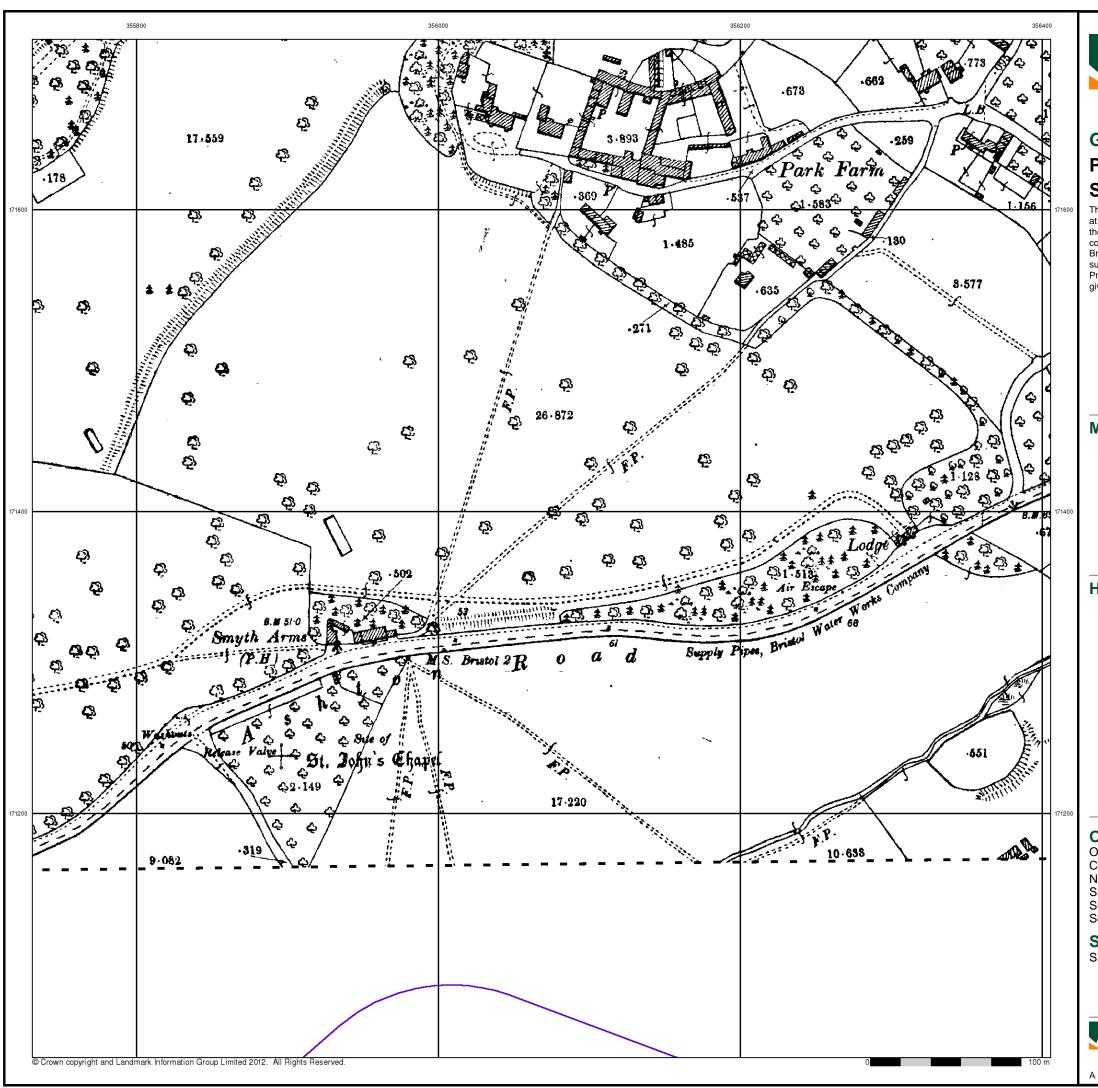
Map Name(s) and Date(s)

Historical Map - Segment A10

Order Details

Order Number: 37704596_1_1 GAVTMR032 Customer Ref: National Grid Reference: 356510, 171290

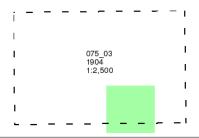
Site Area (Ha): Search Buffer (m): 7.93 100


Site Details

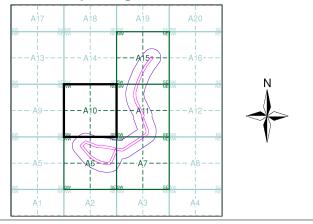
Site at, Ashton Vale, City of Bristol

0844 844 9952 0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 22-Feb-2012 Page 4 of 22


Gloucestershire

Published 1904


Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

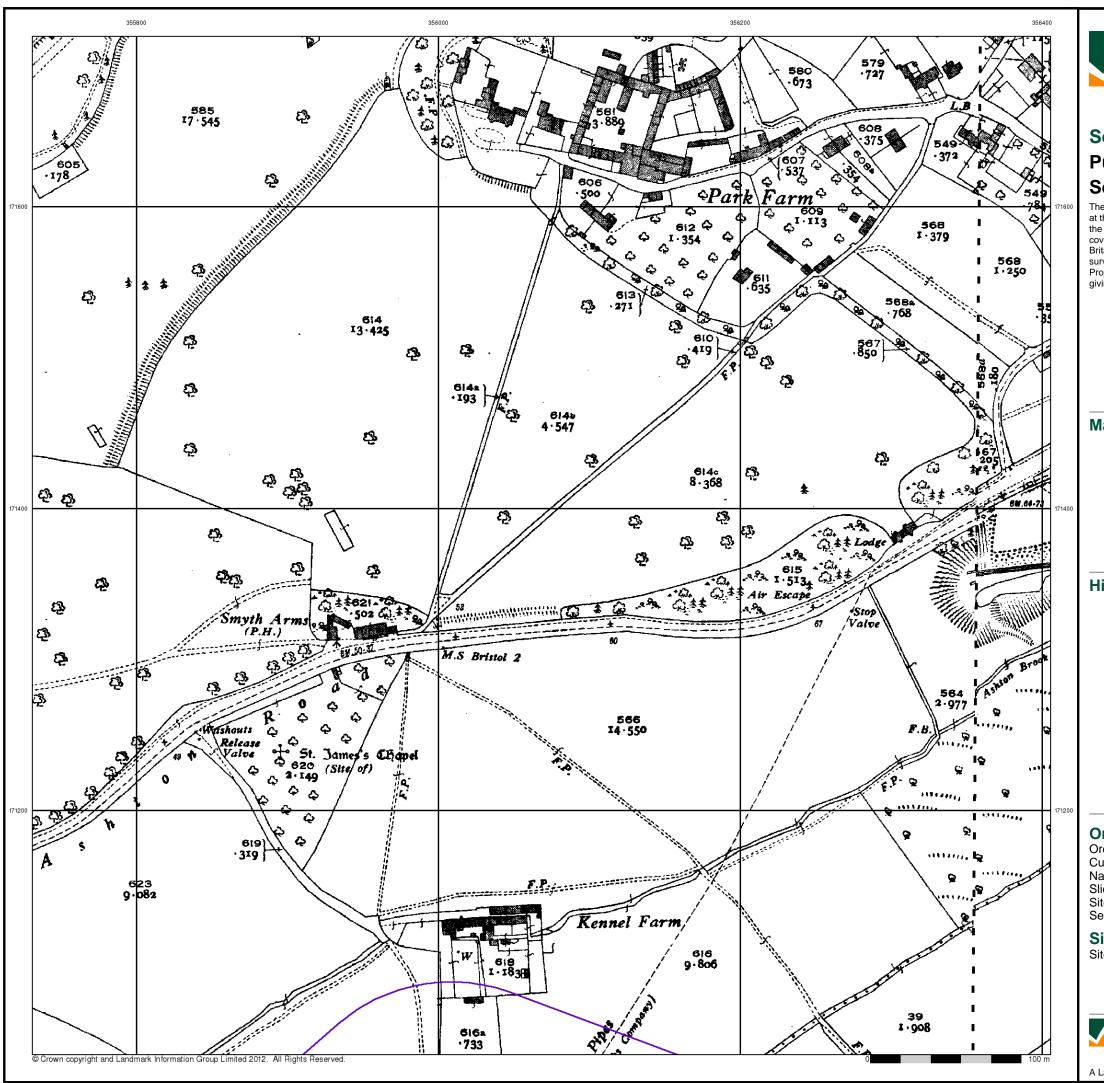
Historical Map - Segment A10

Order Details

Order Number: 37704596_1_1 GAVTMR032 Customer Ref: National Grid Reference: 356510, 171290

Slice:

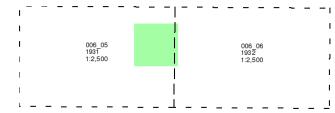
Site Area (Ha): Search Buffer (m): 7.93 100


Site Details

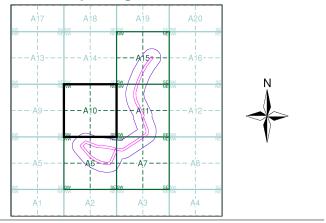
Site at, Ashton Vale, City of Bristol

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 22-Feb-2012 Page 5 of 22



Somerset


Published 1931 - 1932 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

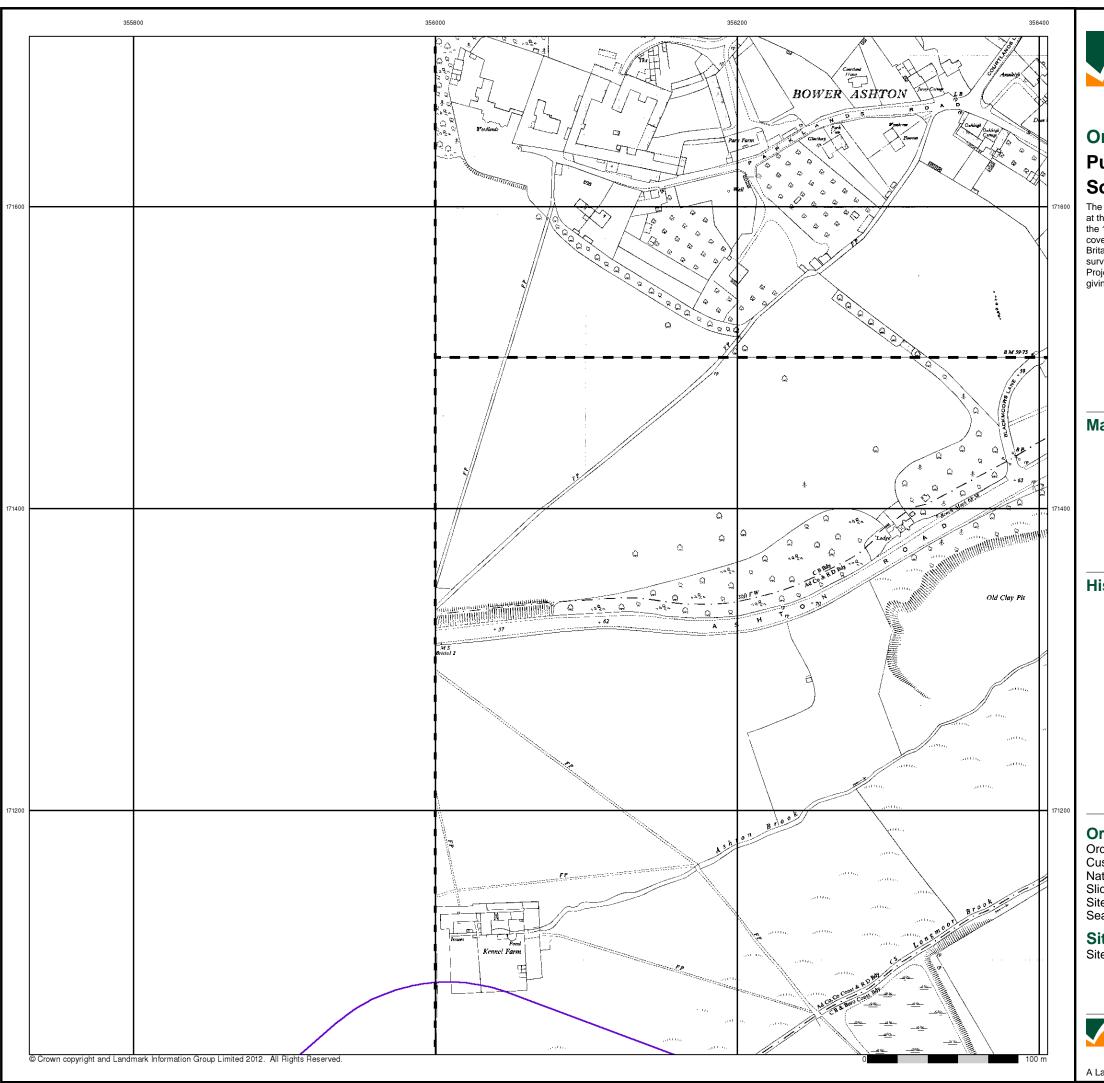
Historical Map - Segment A10

Order Details

Order Number: 37704596_1_1 Customer Ref: GAVTMR032 National Grid Reference: 356510, 171290

Slice:

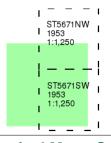
Site Area (Ha): Search Buffer (m): 7.93 100

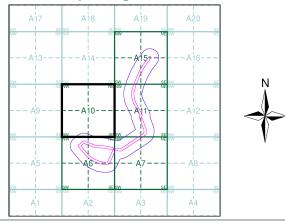

Site Details

Site at, Ashton Vale, City of Bristol

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 22-Feb-2012 Page 8 of 22




Ordnance Survey Plan Published 1953 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveyes of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

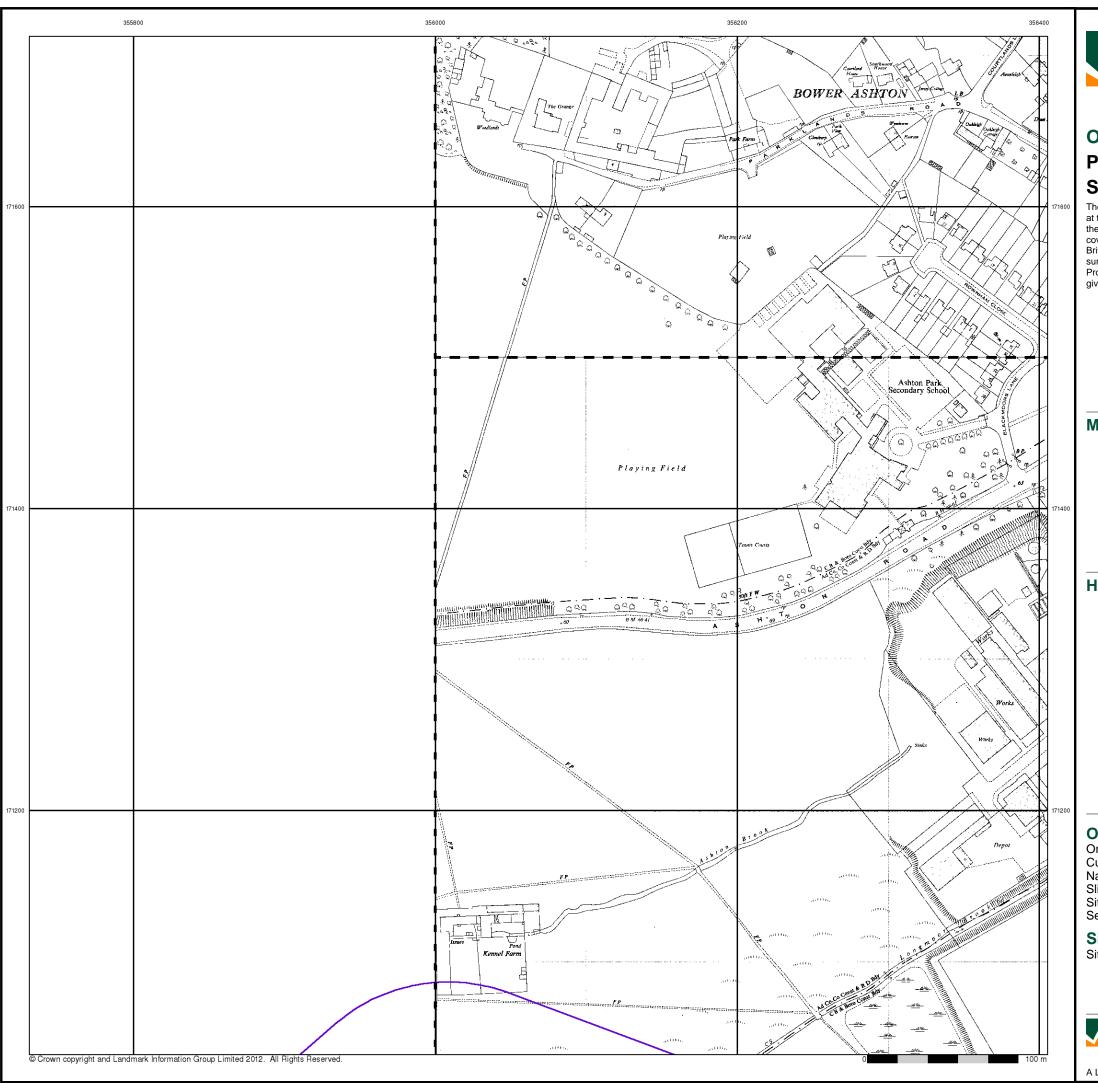
Map Name(s) and Date(s)

Historical Map - Segment A10

Order Number: 37704596_1_1 GAVTMR032 Customer Ref: National Grid Reference: 356510, 171290

Slice:

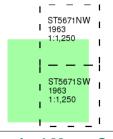
Site Area (Ha): Search Buffer (m): 7.93 100

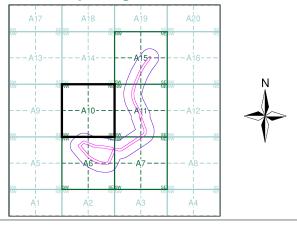

Site Details

Site at, Ashton Vale, City of Bristol

0844 844 9951 www.envirocheck.co.uk

A Landmark Information Group Service v47.0 22-Feb-2012 Page 9 of 22




Ordnance Survey Plan Published 1963 Source map scale - 1:1,250

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

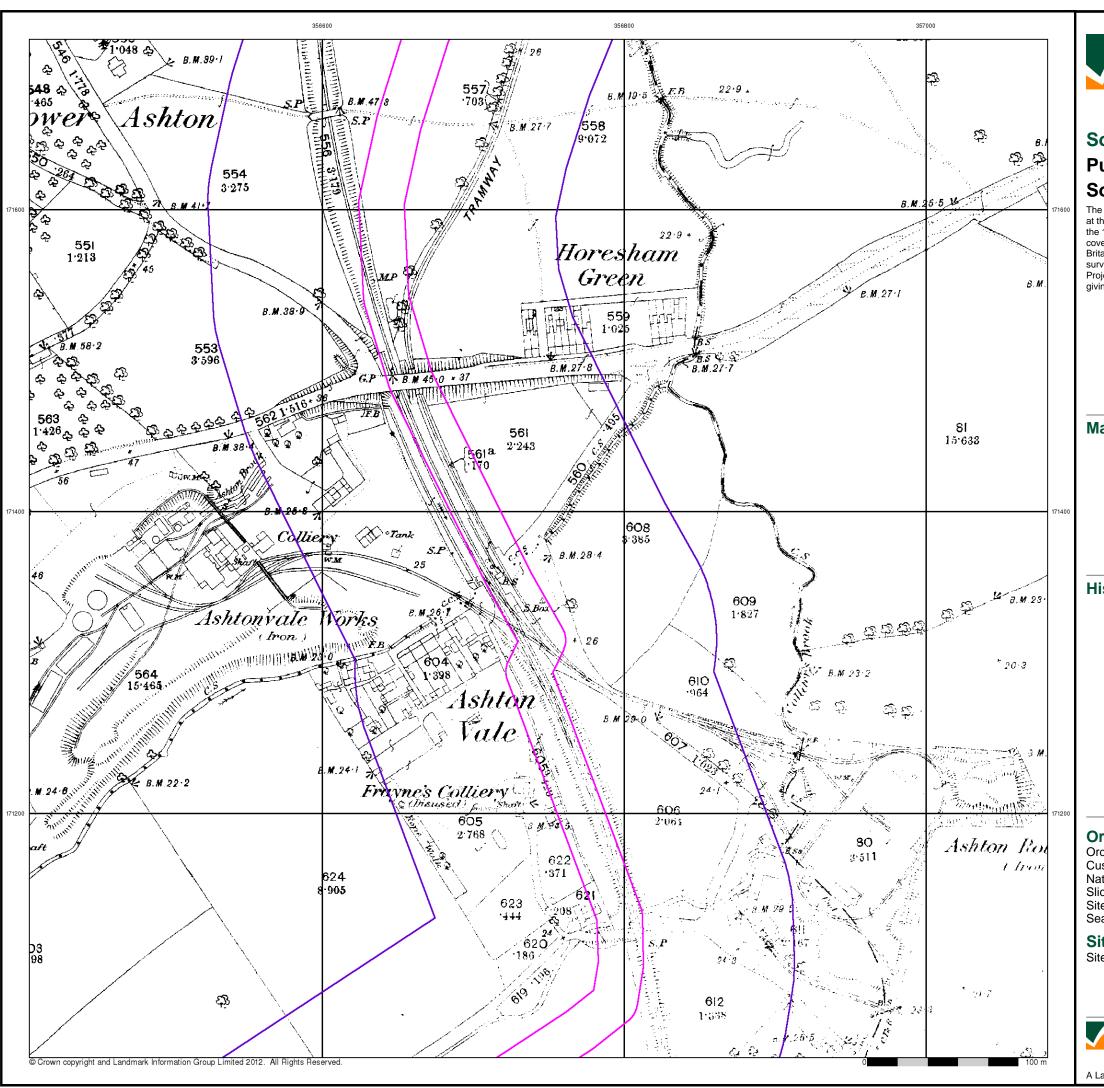
Historical Map - Segment A10

Order Details

Order Number: 37704596_1_1
Customer Ref: GAVTMR032
National Grid Reference: 356510, 171290

Slice:

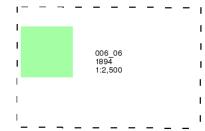
Site Area (Ha): 7.93 Search Buffer (m): 100


Site Details

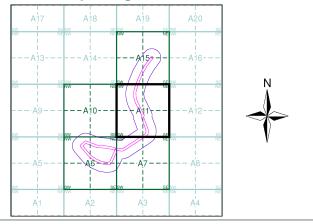
Site at, Ashton Vale, City of Bristol

: 0844 844 9952 k: 0844 844 9951 bb: www.envirocheck.co.uk

A Landmark Information Group Service v47.0 22-Feb-2012 Page 11 of 22



Somerset


Published 1894 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

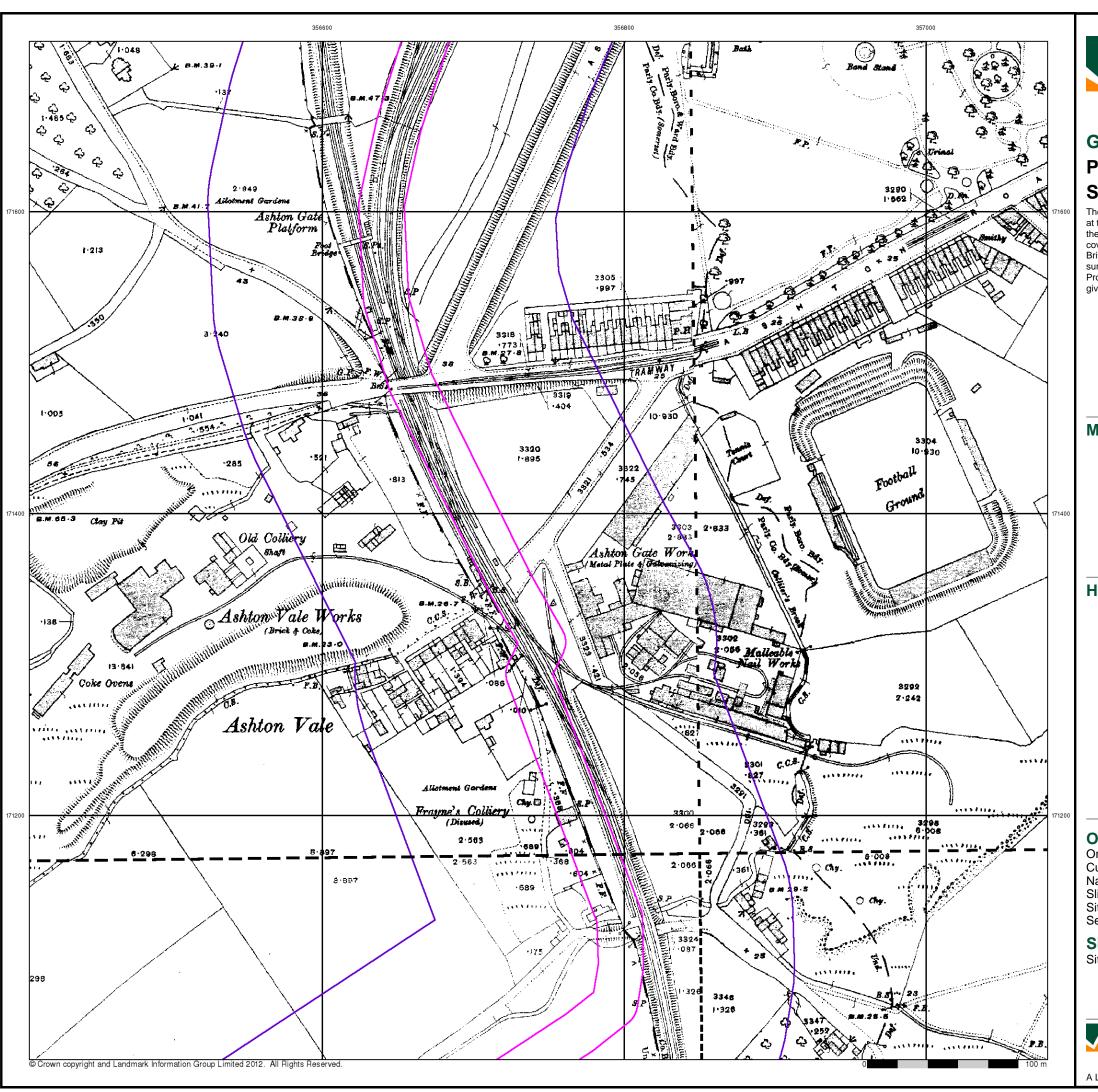
Historical Map - Segment A11

Order Details

Order Number: 37704596_1_1
Customer Ref: GAVTMR032
National Grid Reference: 356510, 171290

Slice:

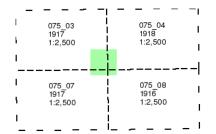
Site Area (Ha): 7.93 Search Buffer (m): 100


Site Details

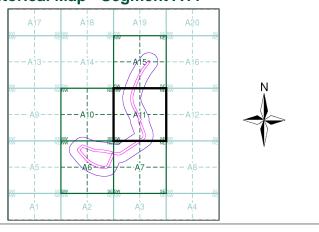
Site at, Ashton Vale, City of Bristol

ol: 0844 844 9952 ax: 0844 844 9951 eb: www.envirocheck.

A Landmark Information Group Service v47.0 22-Feb-2012 Page 3 of 21



Gloucestershire


Published 1916 - 1918 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

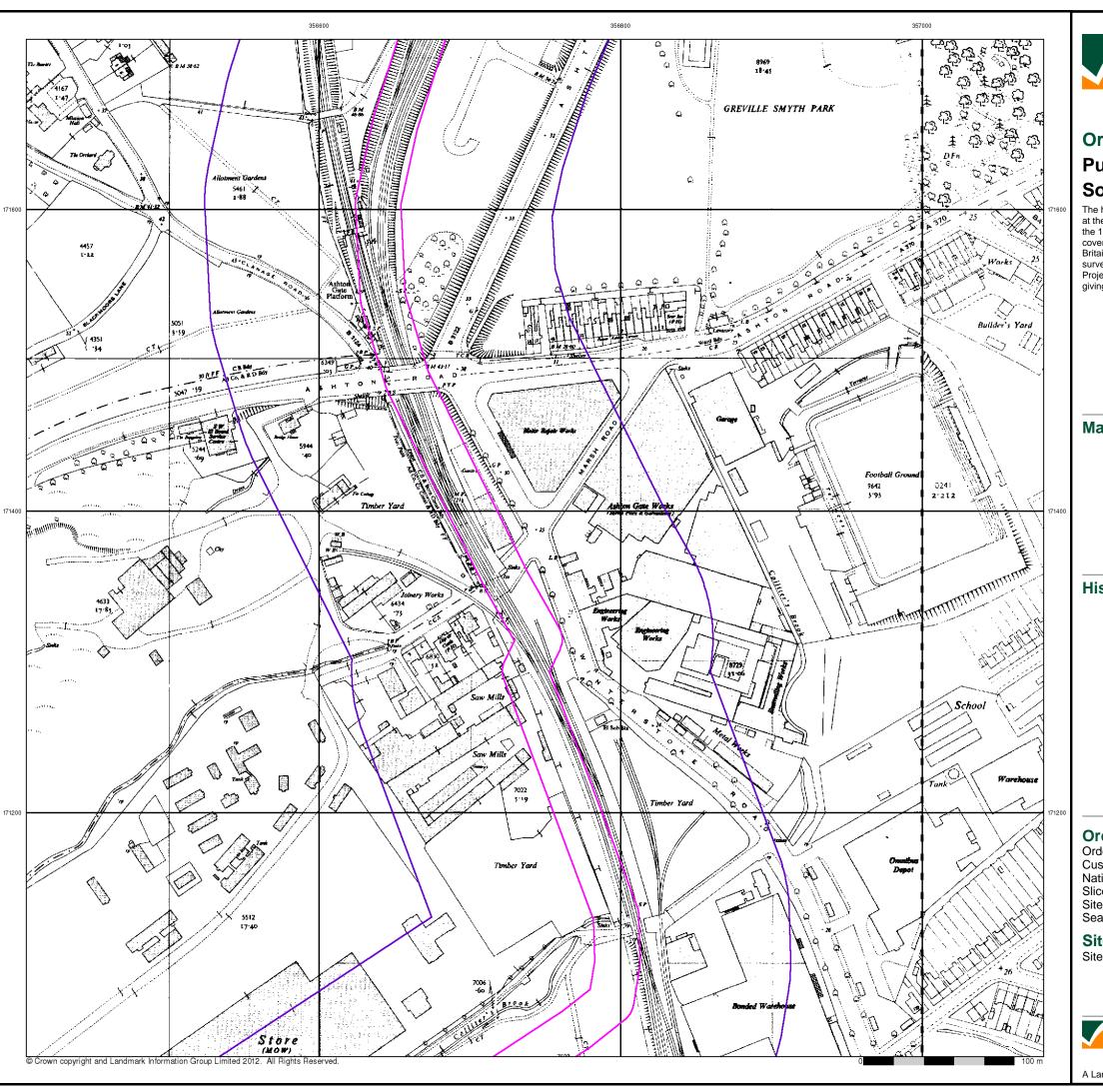
Historical Map - Segment A11

Order Details

Order Number: 37704596_1_1 Customer Ref: GAVTMR032 National Grid Reference: 356510, 171290

Slice:

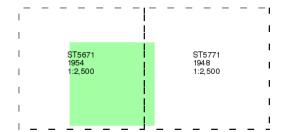
Site Area (Ha): 7.93 Search Buffer (m): 100

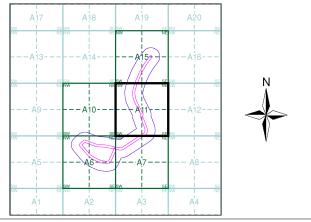

Site Details

Site at, Ashton Vale, City of Bristol

ll: 0844 844 9952 xx: 0844 844 9951 eb: www.envirocheck.

A Landmark Information Group Service v47.0 22-Feb-2012 Page 6 of 21




Ordnance Survey Plan Published 1948 - 1954 Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A11

Order Details

Order Number: 37704596_1_1 Customer Ref: GAVTMR032 National Grid Reference: 356510, 171290

Slice:

Site Area (Ha): 7.93 Search Buffer (m): 100

Site Details

Site at, Ashton Vale, City of Bristol

el: 0844 844 9952 ax: 0844 844 9951 (eb: www.envirocheck.)

A Landmark Information Group Service v47.0 22-Feb-2012 Page 8 of 21

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council
6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex B2
Factual Geotechnical Report, Portishead Car Park
The Infrastructure Planning (Applications: Prescribed Forms and
Procedure) Regulations 2009, regulation 5(2)(a)
Planning Act 2008

Author: CH2M

Date: November 2019

FACTUAL GEOTECHNICAL REPORT

CONTRACT: Portishead Car Park

Harbour Road Portishead Somerset

CLIENT: North Somerset Council

Town Hall

Walliscote Grove Road Weston-super-Mare

Somerset BS23 1UJ

FAO: Mr P. Stewart

REPORT NO: 16-78919/AD/FGReport

PREPARED BY:

A. Dean BSc (Hons)

CHECKED & APPROVED BY:

R. J. Holloway BSc (Hons) MSc FGS CEnv MCIWEM C.WEM

DATE: 31 January 2017

All rights, including Copyright, in this report belong to ACS Testing. The report shall be for the private and confidential use of the Client for whom it has been prepared and may not be reproduced, in whole or part, or relied upon by Third Parties without the express written authority of ACS Testing. © 2017

ACS Testing Ltd. Unit 14 Blackhill Road West, Holton Heath Trading Park, Poole, Dorset BH16 6LE. Ph 01202 622858 – Fax 01202 625045 – Email geo@acstesting.co.uk – www.acsgroupofcompanies.co.uk

REPORT CONTENTS

SECTIO	ON	Page
APPEN	IDICES	iii
1.0	INTRODUCTION	1
2.0	SITE CONDITIONS	2
3.0	GEOLOGY	2
4.0	HYDROGEOLOGY AND HYDROLOGY	3
5.0	INVESTIGATORY WORKS	4
6.0	GROUND CONDITIONS	7
7.0	GEOTECHNICAL TESTING RESULTS	9
8.0	QUALITY STATEMENT	13

APPENDICES

- A --- SITE LOCATION PLAN 16-78919/01
- B --- PHOTOGRAPHIC RECORD PLATES 1-26
- C --- ENVIRONMENT AGENCY MAPS 1-2
- D --- EXPLORATORY HOLE LOCATION PLAN 16-78919/02
- E --- TRIAL PIT LOGS
- F --- INFILTRATION TESTING CERTIFICATE TPPHSA
- G --- TRL DCP RESULT CERTIFICATES
- H --- LANKELMA LTD CPTu REPORT P-106539-1
- I --- LABORATORY TEST CERTIFICATES
 - ▶ ACST 16-79161
 - ▶ ACST 16-79208
 - ▶ ACSE 16-06089-01
 - ▶ ACSE 16-06089-01 WAC
 - ▶ ACSE 16-06100 01
 - ▶ ACSE 16-06100-01 WAC
 - CatWaste Soil Results

1.0 INTRODUCTION

1.1 Instructions

- 1.1.1 ACS were instructed by Mr Paul Stewart of North Somerset Council on 20/11/15 to carry out intrusive investigatory works to aid the design of proposed car parks to service the MetroWest Phase 1 Scheme.
- 1.1.2 The scope of the investigation was prepared and outlined in a Ground Investigation Specification prepared by CH2M on behalf of North Somerset Council.
- 1.1.3 The objectives of this report are to provide additional information of the geological, geotechnical, hydrogeological and geo-environmental conditions at the site to aid the design of car parks, infrastructure and the highway/roundabout relocation at Portishead.
- 1.1.4 Initial instructions were to carry out intrusive investigations at two sites, Portishead and also Pill. However, prior to the commencement it was found that access to the site at Pill was restricted by a chain padlocked gate and a large number of derelict cars situated in the entrance. North Somerset Council informed ACS that access would not be possible at the proposed time of the investigation. Therefore, this report has been prepared in relation the investigation at Portishead only.

1.2 Report Limitations

- 1.2.1 This report has been prepared in accordance with the instructions received from CH2M on behalf of North Somerset Council and includes the findings of in situ and laboratory testing.
- 1.2.2 It should be appreciated that there may be areas of the site that have not been investigated where ground conditions and geotechnical parameters may vary from those encountered. It should also be acknowledged that features or ground conditions identified may be more widespread than those revealed.
- 1.2.3 The information contained in this report is intended for the sole use of North Somerset Council.
- 1.2.4 The conclusions made in this report are limited to those that can be made on the basis of the investigation. The results of the work should be viewed in the context of the number of locations where the ground was investigated; no liability can be accepted for conditions not revealed by the investigation or testing undertaken.
- 1.2.5 The investigation has followed best practice at the date of preparation of the report, in line with the instructions received. Changes in codes of practice and / or legislation, made after preparation of this report could invalidate the conclusions presented within this report.

VACS

2.0 SITE CONDITIONS

- 2.1 The site is open land to the south of Harbour Road, Portishead, Somerset.
- 2.2 The site is an irregular shape and is accessed via a small steel palisade gate which is connected to a palisade fence which runs partially along the eastern boundary of the site. The northern boundary of the site is marked by a public footpath running parallel with the road. The southern boundary is marked by a metal chain link fence with the western boundary adjacent to the gravel footpath.
- 2.3 At the time of the initial visit the site was very overgrown with large shrubs including Cow Parsley, Willow Herb, Thistle, Brambles and sparse Japanese Knotweed. A line of dense vegetation was also present along the eastern and northern boundaries which was formed of brambles and trees including Birch and Oak. The western area of the site was heavily overgrown with several large Oak trees present along the southern boundary.
- 2.4 Historically the site had been railway land with two sets of rails still present, merging into one line from east to west with a buffer stop at the most western point of the tracks. The tracks are raised compared to the other parts of the site and a black ash ballast material is noted to underlie the tracks. Remnants of an old concrete post fence running parallel to the railway line is noted alongside the northern ditch.
- 2.5 The northern part of the site is lower than the central area where the track is located, at a similar level to that of the road to the north. Between the tracks and the northern part of the site is a small ditch which is heavily vegetated, the northern part of the site has a slight slope downwards to the south where the ditch is present. The same feature can be seen on the southern side of the railway tracks where there is also a ditch between the most southerly part of the site and the tracks. Both ditches are most noticeable to the east, with the western part of the site appearing to be more level, however thick vegetation may mask the actual topography.
- 2.6 A badger sett was recorded on the site underlying one of the sleepers on the railway track in the central area of the site. It was unknown if the sett was active, however as a precaution a 10m exclusion was set up around in in order to prevent vehicle movement above the it.
- 2.7 To the north of the site there are a number of commercial units/buildings, a nursing home and residential flats. To the south of the site there are again commercial units and buildings along with a supermarket to the south-west. A river runs close to the western boundary of the site
- 2.8 Photographs taken during the site works are included as Appendix B.

3.0 GEOLOGY

- 3.1 On-line geological British Geological Survey (BGS) mapping and BGS Geological Map Sheet 264 shows the whole site to be underlain by Made Ground. Superficial Tidal Flat Deposits comprising clay and silt are noted to underlie the Made Ground.
- 3.2 Bedrock deposits underlying the site are recorded to be Mudstone and Halite-stone of the Mercia Mudstone Group.

WACS

3.3 Details of ground conditions identified within previous investigation on the site are contained within the Ground Investigation Specification supplied by CH2M. Cone Penetration Testing just to the east of the study site found Tidal Flat Deposits comprising very soft to firm clays proved to a depth of 15.00m.

4.0 HYDROGEOLOGY AND HYDROLOGY

- 4.1 The Environment Agency Groundwater Vulnerability Map shows the superficial deposits to be unproductive strata with the bedrock deposits classified as a Secondary (B) Aquifer.
- 4.2 Secondary (B) Aquifers are defined as predominantly lower permeability layers which may store and yield limited amounts of groundwater due to localised features such as fissures, thin permeable horizons and weathering (EA Definition).
- 4.3 The site is not located above a Groundwater Source Protection Zone (SPZ).
- 4.4 The Flood Map obtained from the Environment Agency website shows that the site is within an area classified as Flood Zone 3. It is also noted that the site is deemed to be currently benefiting from flood defence.
- 4.5 Environment Agency maps are included as Appendix C.

5.0 INVESTIGATORY WORKS

- 5.0.1 An intrusive investigation was undertaken by ACS Testing Ltd in December 2016. Locations for the investigation were chosen by the Client in order to provide adequate coverage of the site.
- 5.0.2 During an initial walkover of the site CH2M informed ACS that three of the Trial Pit locations, TPPH01, TPPH02 and TPPH07, were positioned in order to find services of which the exact location were unknown. This information was not supplied to ACS prior to the start of the investigation and therefore the three positions were removed from the investigation as this was out of the scope of works and safety measures were not in place to carry out service investigations.
- 5.0.3 The locations that were carried out were cleared by a trained ACS Geo-Environmental Engineer using a Cable Avoidance Tool.
- 5.0.4 It should be noted that due to the size and access restrictions of the CPTu Tracked Truck some locations were altered.
- 5.0.5 Locations of the exploratory holes are shown on the Exploratory Hole Location Plan included as Appendix D. Exact positions of Trial Pits and CPTu Tests are shown in Table 1 below.

Exploratory Hole	Easting	Northing	Ground Level (mAOD)
TPPH03	347299	176431	107.78
TPPH04	347367	176410	107.44
TPPH05	347443	176407	107.49
TPPH06	347515	176397	107.36
TPPHSA	347453	176403	107.47
CPT01	347457	176401	107.49
CPT02	347475	176401	107.61
CPT03	347490	176362	107.69
CPT04	347510	176388	107.70
CPT05	347364	176407	107.53
CPT06	347387	176413	106.83

Table 1. Positions of exploratory holes.

5.1 Trial Pits

- 5.1.1 Five trial pits were excavated using a JCB 3CX Backhoe Excavator with a 600mm bucket to a maximum depth of 3.50m. Samples were collected from within the trial pits and later scheduled for geotechnical and contamination testing. The trial pits were logged in accordance with BS5930:2015.
- 5.1.2 All trial pits were backfilled upon completion, compacted in layers with arisings returned in reverse order to preserve the natural stratigraphy.
- 5.1.3 Trial Pit logs are included as Appendix E.

5.2 Infiltration Testing

5.2.1 BRE 365 infiltration testing was carried out within one trial pit to assess the potential for soakaway drainage to be used on site. Test certificates are included as Appendix F.

Page 4

5.3 TRL DCP Testing

- 5.3.1 TRL Dynamic Cone Penetrometer (DCP) testing was carried out within four trial pits TPPH03-06 at 1m depth in order to obtain a California Bearing Ratio (CBR) value for the ground at this depth.
- 5.3.2 Copies of the TRL DCP result certificates are included as Appendix G

5.4 CPTu Testing

- 5.4.1 Lankelma Ltd carried out 7no. Seismic Piezocone Tests (CPTu) on the 16/12/2016 using a 20.5 tonne track-truck mounted CPT unit equipped with a 17 tonne capacity hydraulic ram set.
- 5.4.2 Cone measurements included cone tip resistance, friction sleeve resistance and dynamic pore water pressure as well as down-hole seismic testing.
- 5.4.3 One test (CPT03) did not reach the intended depths due to the very dense nature of the materials encountered. Test CPT03A was carried out 1m from CPT03 and reached the required depth.
- 5.4.4 A copy of the report produced by Lankelma Ltd including the findings of the investigation is included as Appendix H.

5.5 Geotechnical & Basic Chemical Testing

- 5.5.1 Nine soil samples were tested for Natural Moisture Content, Liquid Limit and Plastic Limit. From these tests the Plasticity Indices can be calculated which can be used to determine the shrinkage potential of cohesive soils.
- 5.5.2 Six soil samples underwent wet sieve testing in order to determine Particle Size Distribution (PSD) in accordance with BS 1377: Part 2. All of these samples also underwent sedimentation testing to determine the percentages of fine material.
- 5.5.3 Seven soil samples were tested for the UKSGI Suite D for potentially aggressive ground conditions in order to assist the specification of future buried concrete.
- 5.5.4 Six soil samples were tested for Organic Matter Content.
- 5.5.5 Copies of laboratory test certificates are included as Appendix I.

5.6 Contamination Testing

- 5.6.1 Five soil samples were scheduled for the UKSGI Suite E in order to assess if any contamination is present within the soils across the site. All five samples were run through the CatWaste Soil program to determine if any of the samples had hazardous properties.
- 5.6.2 Three soil samples were scheduled for the UKSGI Suite K for leachate testing. This was tested in order to determine if the ground units on site are a source of risk to sensitive water receptors.
- 5.6.2 Copies of laboratory test certificates and CatWasteSoil report are included as Appendix I.

5.7 Waste Acceptance Criteria Testing

- 5.7.1 Two samples were tested for UKSGI Suite L (modified) to assist with the classification for materials which may be necessary to dispose of off-site.
- 5.7.2 Copies of laboratory test certificates are included as Appendix I.

6.0 GROUND CONDITIONS

6.1 Summarised Ground Conditions

6.1.1 Summarised ground conditions found within the boreholes on site are shown in Table 2 below.

Unit	Locations Encountered	Minimum depth encountered (m)	Thickness (m)
TOPSOIL	TPPH05, TPPH06 & TPPHSA	Ground Level	0.30-0.68
MADE GROUND	TPPH03, TPPH04, TPPH06 & TPPHSA	Ground Level – 0.35	0.40-1.23
DESICCATED SUPERFICIAL DEPOSITS	TPPH03, TPPH04, TPPH05 & TPPHSA	0.68-1.23	0.87-1.20
TIDAL FLAT DEPOSITS	All Locations	1.30-2.40	Proven to 1.65

Table 2. Summarised ground conditions

6.1.2 Topsoil

Identified within three of the exploratory hole locations from ground level to a maximum depth of 0.68m. The unit typically comprises a soft brown sandy gravelly SILT.

6.1.3 Made Ground

Made Ground was identified within four of the exploratory holes and recorded to a maximum depth of 1.30m within TPPH06. The unit varied across the site with the locations alongside the railway tracks having Made Ground typically comprising a dark grey SAND and GRAVEL with abundant clinker, brick, glass, macadam and stone, typical of a railway ballast. The other areas of the site were found to have Made Ground units comprising grey SILT and SAND with black gravel noted in TPPH06 at 1.20m depth.

6.1.4 Desiccated Superficial Deposits

Identified within four exploratory holes to a maximum depth of 2.40m. The unit typically comprised a stiff greyish mottled brown clayey sandy SILT.

6.1.5 Tidal Flat Deposits

Found within all exploratory holes on site and proven to 3.50m. The unit typically comprises a very soft to soft bluish grey silty CLAY. Some rare firm areas are noted throughout.

6.2 Groundwater

6.2.1 Groundwater seepage was noted in three of the trial pits excavated. Seepage into the pits was recorded at depths ranging from 2.70-2.90mbgl. No standing groundwater was recorded within any of the excavations.

6.3 Infiltration Testing

- 6.3.1 Infiltration testing was carried out in one of the trial pits in order to assess the suitability of soakaway drainage for the proposed development.
- 6.3.2 One test was carried out within TPPHSA on 13/12/2016. The test was carried out for a total of 152 minutes with a fall of 3cm recorded over this period. Due to the time constraints an infiltration rate was unable to be calculated due to the water level not reaching a 25% level within the pit.
- 6.3.3 It is therefore assumed that soakaway drainage will not be feasible at the site.

6.4 TRL DCP Testing

- 6.4.1 TRL DCP testing was carried out within four of the trial pits. Testing was commenced at 1m depth in all trial pits as requested within the scope of works.
- 6.4.2 It is possible to calculate CBR values from the results of TRL DCP testing. Results of the testing has recorded CBR values of 7% or higher in all locations apart from TPPH03 where a lowest value of 4% was recorded.
- 6.4.3 Results of the TRL DCP testing is included as Appendix G.

7.0 GEOTECHNICAL TESTING RESULTS

7.1 Index Properties - Moisture Content and Atterberg Limit testing (LL/PL/PI)

- 7.1.1 In accordance with NHBC 4.2, shrinkable soils are those containing more than 35% fine particles (60µm) and have a Modified Plasticity Index of 10% or greater. The Modified Plasticity Index is calculated as the Plasticity Index of the soil multiplied by the percentage of particles less than 425µm.
- 7.1.2 The Modified Plasticity Index can be used to determine the volume change potential of the underlying soil. The table below summarises the volume change potential of soils based on the Modified Plasticity Index.

Modified Plasticity Index	Volume Change Potential		
40% and greater	High		
20% to less than 40%	Medium		
10% to less than 20%	Low		
Less than 10%	Non-Shrinkable		

Table 3. Modified Plasticity Index relating to Volume Change Potential.

7.1.3 The results of the laboratory testing are shown in Table 3 below.

Reference (Depth)	Moisture Content %	Percentage passing 425µm sieve (%)	Plastic Limit (%)	Liquid Limit (%)	Plasticity Index (%)	Modified Plasticity Index (%)
TPPH03 (1.30m)	44	100	27	71	44	44
TPPH03 (2.70m)	32	99	20	60	40	39.60
TPPH04 (1.60m)	23	100	19	55	36	36
TPPH04 (2.10m)	35	100	19	53	34	34
TPPH04 (2.60m)	31	100	18	50	32	32
TPPH05 (1.20m)	21	100	17	48	31	31
TPPH05 (2.60m)	27	100	17	44	27	27
TPPH05 (3.10m)	41	100	20	59	39	39
TPPH06 (2.00m)	30	100	20	51	31	31
					imum imum	44 27

Table 4. Moisture content and Atterberg Limit testing results

7.1.4 The results of the testing have revealed the samples to have a medium to high shrinkage potential.

7.1.5 Shrinkable soils are subject to change in volumes as their moisture content is altered. Soil moisture contents vary seasonally and influenced by a number of factors including the action of tree roots. The resulting shrinkage or swelling of the soil can cause subsidence or heave damage to foundations, the structures they support and services.

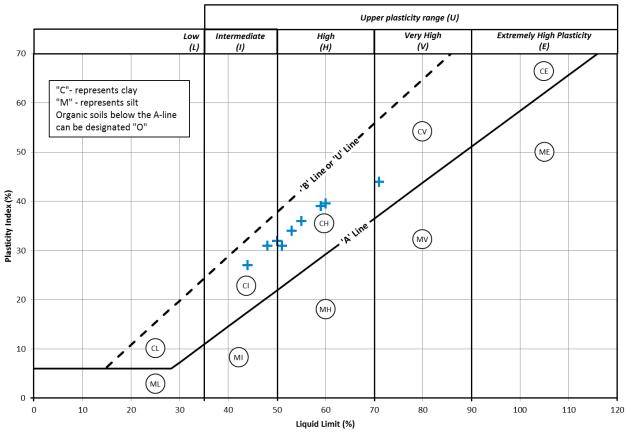


Figure 1. Results of LL/PL/PI testing plotted on an A-Chart

7.2 Particle Size Distribution Testing

7.2.2 Six sample were tested to determine the Particle Size Distribution by wet sieving and sedimentation testing. Figure 4 below summarises the results of the testing.

Portishead Car Park, Harbour Road, Portishead Particle Size Distribution & Sedimentation

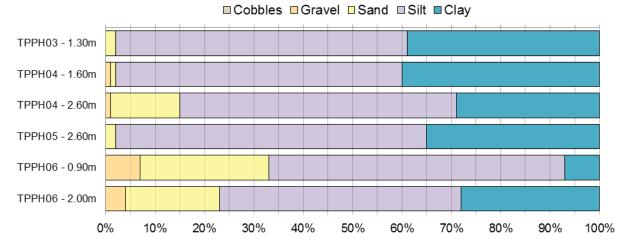


Figure 2. Summary of Particle Size Distribution determined by wet sieve and sedimentation method.

7.4 Aggressive Ground Chemical Suite

7.4.1 The basic results of UK SGI Suite D testing are shown in Table 5 below and a complete set of results are recorded on the Laboratory certificates are included in Appendix H.

Trial Pit no.	Depth (m)	рН	Water Soluble Chloride mg/l	Water Soluble Sulphate mg/l	Water Soluble Nitrate mg/l	Magnesium mg/kg
TPPH03	0.30	6.5	<3.00	3.99	<0.01	2760
TPPH03	2.70	8.3	18.9	11.6	0.822	9190
TPPH04	1.60	8.1	10.8	8.16	0.90	8530
TPPH04	2.10	7.6	8.06	471	0.22	9540
TPPH05	1.00	7.9	7.12	14.9	0.27	7530
TPPH06	0.40	7.8	12.0	53.9	0.24	3240
TPPH06	2.00	8.7	109	225	0.36	9170

Table 5. Basic Chemical Test Results.

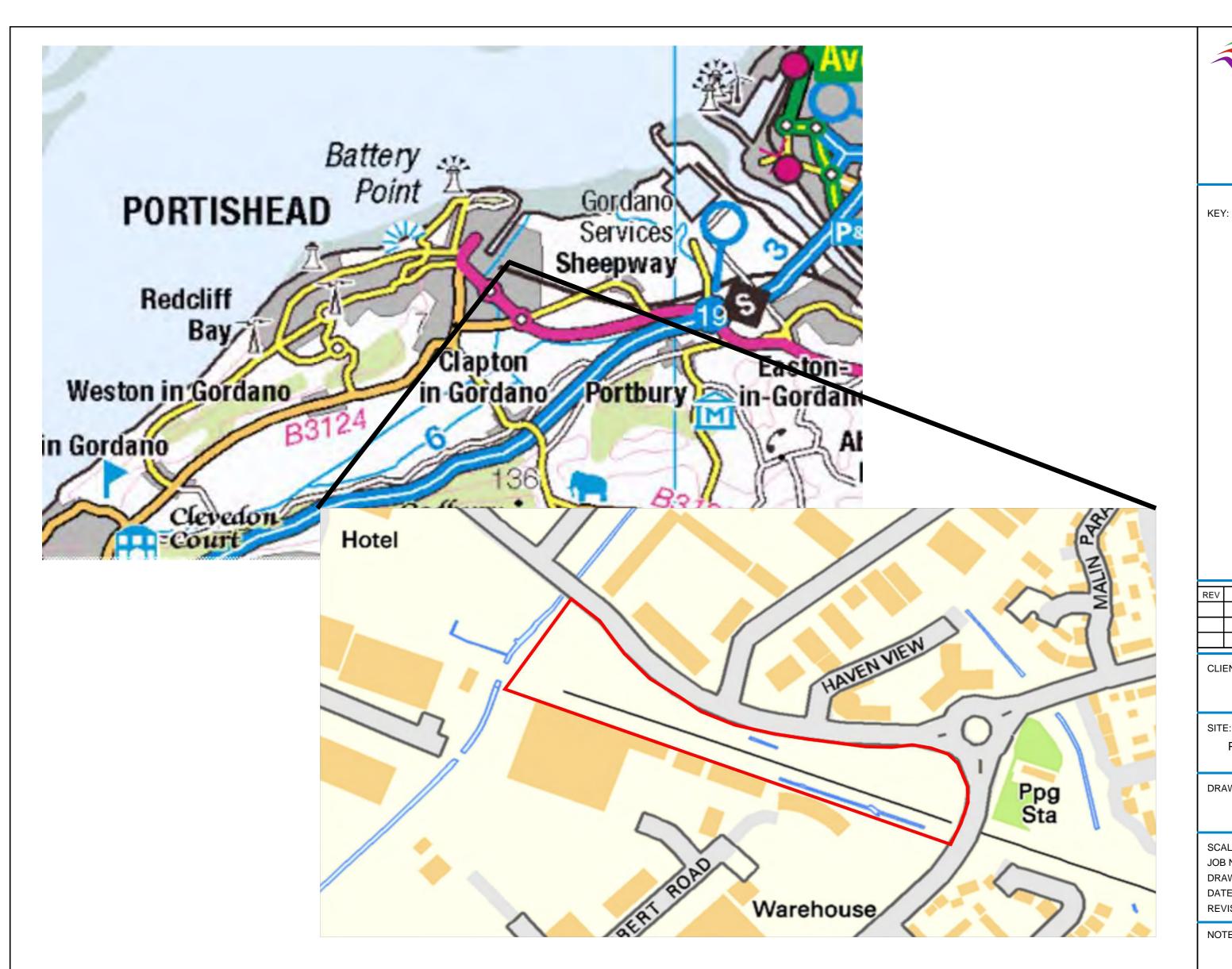
7.5 Organic Matter Content Results

7.5.1 The results for Organic Matter Content testing are shown in Table 6 below. The certificates for this testing are included as Appendix H.

Borehole no.	Depth (m)	Organic Matter Content (%)
TPPH03	0.90	3.17
TPPH04	1.60	0.40
TPPH04	2.60	1.04
TPPH05	2.60	1.90
TPPH06	0.90	1.60
TPPH06	2.00	0.92

Table 6. Organic Matter Content Test Results

8.0 QUALITY STATEMENT


- 8.1 We confirm that in preparing this report we have exercised reasonable skill and care in order to produce accurate details.
- We confirm that testing has been conducted in accordance with relevant Standards, as requested by the Client, with reference to the Organisation's Quality Manual Procedures.
- 8.3 The results and contents of this report are based upon in situ and laboratory testing.
- 8.4 Consequently, comments contained herein are derived from the determination of the results from the in situ and laboratory testing.
- 8.5 ACS Testing warrants only the accuracy of the test result and information contracted to be supplied to the Client but will accept no liability in respect of the use to which the Client puts such information or the purpose for which such information was requested.
- 8.6 Unless specifically assigned and confirmed in writing within the terms of the Agreement/Written Order the Organisation asserts and retains all Copyright and other Intellectual Property rights, in and over the report and its contents.

APPENDIX A

SITE LOCATION PLAN - 16-78919/01

UNIT 14 BLACKHILL ROAD WEST HOLTON HEATH TRADING PARK POOLE, DORSET BH16 6LE T: 01202 628647

E: geo@acstesting.co.uk

DO NOT SCALE

REV	DESCRIPTION	BY	CHK	APP	DATE

CLIENT:

North Somerset Council

SITE:

Portishead Car Park, Harbour Road, Portishead, Somerset

DRAWING TITLE:

Site Location Plan

SCALE:

@ 16-78919 JOB NO. DRAWING NO. 16-78919/01

19/01/2016 DATE. REVISION.

NOTES:

© ACS Testing Ltd

APPENDIX B

PHOTOGRAPHIC RECORD PLATES 1-26

Plate 1. View west on to the site from Quays Avenue. Note the steel palisade fence and gate providing access onto the site.

Plate 2. View west of the site along the existing railway tracks.

Plate 3. View north-west from the entrance gate on to site. Slight slope is noted downwards towards the north of the site.

Plate 4. View south-west from the central area of the site. Note off site buildings that run adjacent to the southern boundary. A small ditch is present between the location where the photograph was taken and the site boundary. Note overgrowth which is present across the site.

Plate 5. View western of the northern area of the site. The trackway seen was created using a tracked machine with a CH2M ecologist present. Note the tree/shrub line running on site parallel to the northern boundary.

Plate 6. View east back across the site from the central area. Note upwards slope from the north up to the south of the site.

Plate 7. View west along the railway tracks in the western third of the site. The two sets of track begin to join into one line at this point.

Plate 8. View north of a historic buffer stop located at the western end of the railway line.

Plate 9. View south-west along the public footpath located off site adjacent to the western site boundary. Note the river running south to north in the right of the image.

Plate 10. View east along the northern site boundary with Harbour Road.

Plate 11. View west of the north-eastern corner of the site.

Plate 12. TPPH03 material at 0.40m - railway ballast.

Plate 13. TPPH03 1.30m depth – Desiccated Superficial Deposit arisings.

Plate 14. TPPH03 - 2.70m - Tidal Flat Deposits

Plate 15. TPPH04 – 0.40m – Made Ground.

Plate 16. TPPH04 – 1.60m – Desiccated Superficial Deposits

Plate 17. TPPH04 – 2.40m – Tidal Flat Deposits

Plate 18. View within TPPH04, water in base is from gradual seepage from the base of the pit.

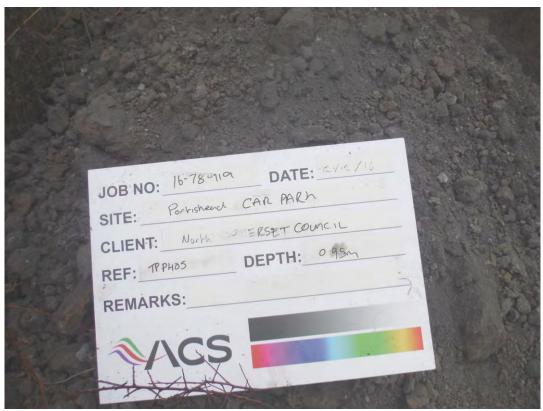


Plate 19. TPPH05 - 0.95m - Made Ground.

Plate 20. TPPH05 – 2.20m – Tidal Flat Deposits

Plate 21. TPPH06 - 0.30m - Made Ground

Plate 22. View within TPPH06 of the dark grey gravel, potentially cover/surround for a service.

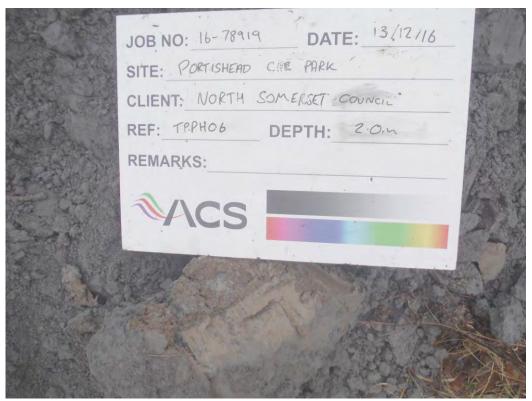
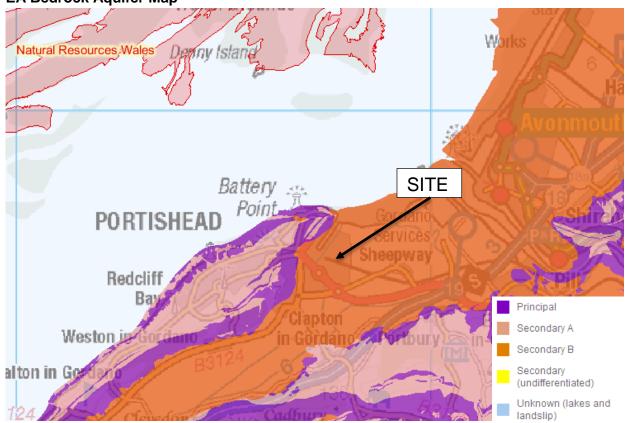


Plate 23. TPPH06 – 2.00m – Desiccated Superficial Deposits.

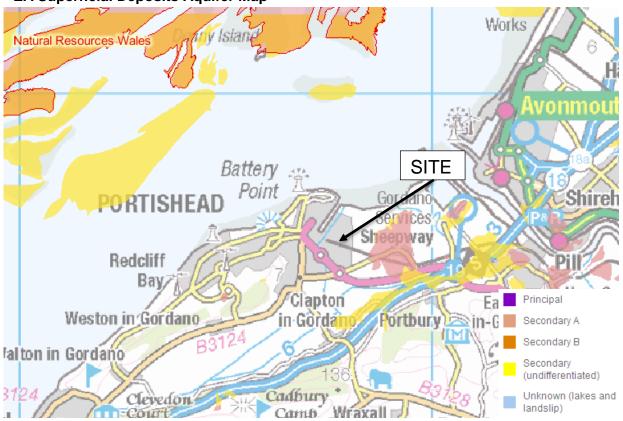
Plate 24. CPTu Tracked Truck in the position of CPT02.

Plate 25. CPTu Tracked Truck in the position of CPT04

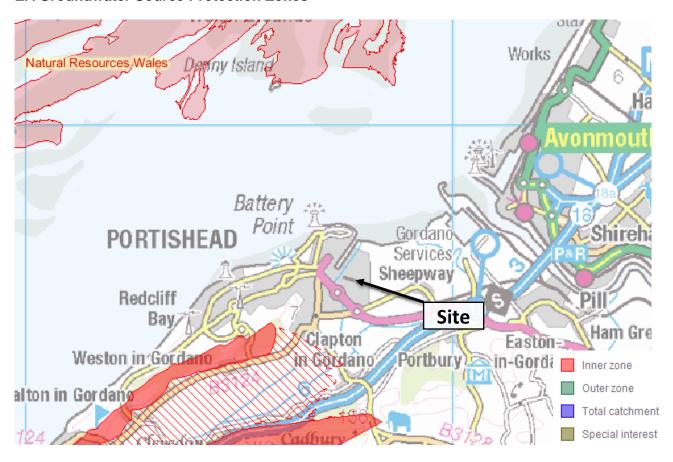
Plate 26. CPTu Tracked Truck in position of CPT05.



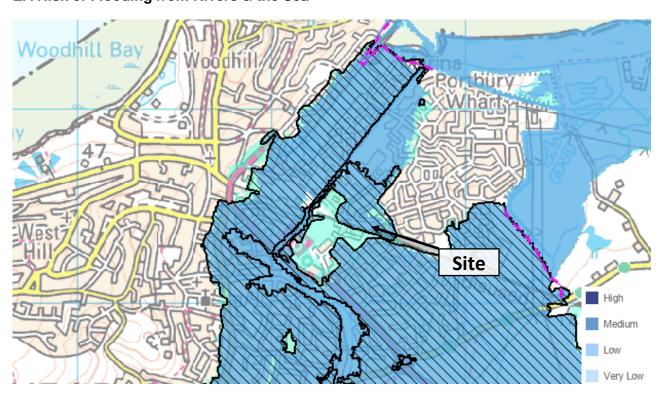
APPENDIX C


ENVIRONMENT AGENCY MAPS 1-2

EA Bedrock Aquifer Map



EA Superficial Deposits Aquifer Map



EA Groundwater Source Protection Zones

EA Risk of Flooding from Rivers & the Sea

APPENDIX D

EXPLORATORY HOLE LOCATION PLAN - 16-78919/02

REV	DESCRIPTION	BY	CHK	APP	DATE

Portishead Car Park, Harbour Road,

© ACS Testing Ltd

APPENDIX E

TRIAL PIT LOGS

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Technical Notes (where applicable):

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

TRIAL PIT LOG

Pit Stability: Stable

Groundwater: Groundwater not encountered.

Trial Pit No. TPPH03

		www.acste	sting.co.uk				Sheet 1 of 1
Client	North Somerset Council		Depth	Dimensions (m):	Lab Ref.		Hole Type
Site	Portishead Car Park		(m):	1.90	Plant Used	•	Scale
Location	Land at Harbour Road, Portish Somerset	ead,	3.50	09.0	with 600mn	CO Wheeled Excavator n bucket	1:20
Ground L	_evel (mAOD): 107.78	Co-ords:	34729	9.0E, 176431.0N	Date(s)	12/12/2016	Logged By AD

	ilu Level (IIIAOD).	107.76	Co-orus.	347299.0E,		1.014	Date(5)	12/12/2			AD
All units				Donth	ess		Water	Sample		Testing	
units = (m)	Stratu	ım Description		Depth (Level)	Thickness	Legend	Strikes	Sample (Type) Depth	Depth	Туре	Results
	MADE GROUND. Do Gravel is fine, mediu sub-rounded of clink and stone. MADE GROUND. G is fine, medium and rounded of stone and	im and coarse er, brick, mac rev sandv GR	e; angular to adam, glass	0.45 (107.33)	(0.75) (0.45) T				Берин	Турс	ivesuis
1	Stiff grey mottled bro Becoming very claye	own clayey sal ey with depth.	ndy SILT.	1.20 (106.58)							
2				2.40 (105.38)	(1.20)						
3	Soft to firm bluish gr	ey silty CLAY.		2. 6 (263.56)	(1.10)						
4	End of ī	Гrial Pit at 3.500m	1	3.50 (104.28)		x	<u> </u>				

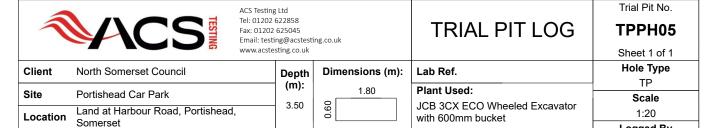
Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

TRIAL PIT LOG

Groundwater: Water seepage from base up to 2.90m.


Trial Pit No. TPPH04

Sheet 1 of 1

AD

								Sheet For F
Client	North Somerset	Council		Depth	Dimensions (m):	Lab Ref.		Hole Type
Site	Portishead Car F	Park		(m):	2.10	Plant Used	==	Scale
Location	Land at Harbour Somerset	Road, Portish	nead,	3.00	9.0	with 600mr	CO Wheeled Excavator n bucket	1:20
Ground L	evel (mAOD):	107.44	Co-ords:	34736	7.0E, 176410.0N	Date(s)	12/12/2016	Logged By AD

s	Stratum Description	Depth (Level)	Thickness	Legend	Water	Sample (Type) Depth		Testing	
		(Level)	This	XXXXXXXXX	Strikes	Depth	Depth	Туре	Result
1	MADE GROUND. Dark grey very gravelly SAND. Gravel is fine, medium and coarse;								
7	angular to sub-rounded of clinker, stone and								
1	brick. Wood recorded below 0.60m.								
$\frac{1}{2}$									
1									
4									
1									
+			(1.23)						
1			=						
1									
+									
1									
\dashv									
1									
+									
1	Stiff grey mottled brown clayey SILT.	1.23 (106.21)							
1	our groy mouled brown dayby cier.			XXXXXX					
+				<u> </u>					
1				$\times \times $					
+				XXXXX					
1			(0.87)	X X X X X X X X X X X X X X X X X X X					
1			0.	$\times \times $					
7				<u> </u>					
1				$\times \times $					
+									
1				(* xx*x*x*					
+	Very soft to soft bluish grey silty CLAY.	2.10 (105.34)		XXXXX					
7				XXX					
1				XXX					
+									
1									
\dashv			<u>6</u>	XX^X					
1			(0.90)	XXX					
+				XXX					
1									
1				^^					
+				××-×					
1	F 1 (T: 1D) 10 000	3.00 (104.44)		<u> </u>					
1	End of Trial Pit at 3.000m	, ,							
7									
1									
+									
1									
+									
7									
1									
+									
1									
+									
1									
-							1	1	

347443.0E, 176407.0N

Date(s)

13/12/2016

Pit Stability:

Stable

Groundwater: Small amount of water seepage at 2.70m.

107.46

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Technical Notes (where applicable):

Co-ords:

Ground Level (mAOD):

Logged By

ΑD

All	2500 (I						-	AD
units =	Stratum Description	Depth (Level)	Thickness	Legend	Water Strikes	Sample (Type) Depth		Testing	- "
(m)	TOPSOIL. Soft greyish brown sandy gravelly SILT. Gravel is fine, medium and coarse; subangular to rounded of stone.		Th (0.68)				Depth	Туре	Results
1	Stiff greyish brown clayey sandy SILT.	- 0.68 (106.78)	(1.17)						
2 —	Soft to firm brownish grey silty CLAY.	- 1.85 (105.61)	(0.95)						
3 —	Very soft bluish grey silty CLAY.	- 2.80 (104.66)	(0.70)		•				
	End of Trial Pit at 3.500m	- 3.50 (103.96)		xxxxx					

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

TRIAL PIT LOG

Trial Pit No. TPPH06

ΑD

		www.acste	sting.co.uk			Sheet 1 of 1
Client	North Somerset Council		Depth	Dimensions (m):	Lab Ref.	Hole Type TP
Site	Portishead Car Park		(m):	1.70	Plant Used:	Scale
Location	Land at Harbour Road, Portish	nead,	2.10	09:0	JCB 3CX ECO Wheeled Excavator with 600mm bucket	1:20
Ground L	Somersetevel (mAOD): 107.36	Co-ords:	34751	5.0E, 176397.0N	Date(s) 13/12/2016	Logged By AD

All units	Otanta	Depth	ness		Water	Sample		Testing	
(m)	Stratum Description	Depth (Level)	Thickness	Legend	Strikes	Sample (Type) Depth	Depth	Туре	Results
- - - -	TOPSOIL. Soft brown clayey sandy gravelly SILT. Gravel is fine, medium and coarse; angular to sub-rounded of stone. MADE GROUND, Grey mottled brown clayey.	- 0.35 (107.01)	(0.35)						
- - - - - - - - - - - - - - - - - - -	MADE GROUND. Grey mottled brown clayey sandy SILT. Rare brick noted. Black gravel noted in the northern end of the pit at 1.20m, possible unknown service.		(0.95)						
- - - - - - - - - -	Grey silty SAND.	- 1.30 (106.06)	(0.60)						
2 —	Firm grey mottled brown clayey SILT.	1.90 (105.46)		X X X X X X X X X X X X X X X X X X X					
3	End of Trial Pit at 2.100m	2.10 (105.26)							

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Pit Stability:

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Groundwater not encountered.

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

TRIAL PIT LOG

Trial Pit No. **TPPHSA**

			www.ucstc	Julig.co.uk				Sneet 1 of 1
Client	North Somerset	Council		Depth	Dimensions (m):	Lab Ref.		Hole Type
Site	Portishead Car	Park		(m):	1.80	Plant Used	d: ECO Wheeled Excavator	Scale
Location	Land at Harbour Somerset	Road, Portish	iead,	2.70	0.6	with 600mr		1:20
Ground L	evel (mAOD):	107.47	Co-ords:	34745	3.0E, 176403.0N	Date(s)	13/12/2016	Logged By AD

All units	Stratum Description	Depth (Level)	Thickness	Legend	Water	Sample (Type) Depth		Testing	
= (m)		(Level)	Thic	V/////////////////////////////////////	Strikes	Depth	Depth	Туре	Results
-	TOPSOIL. Soft brown sandy gravelly SILT. Gravel is fine, medium and coarse; angular to sub-rounded of stone. MADE GROUND. Grey silty gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of stone.	- 0.30 (107.17)	(0.40)						
-	Stiff grey mottled brown clayey SILT.	- 0.70 (106.77)	0)						
1			(1.10)						
2	Soft bluish grey silty CLAY.	- 1.80 (105.67)	(06.0)	X X X X X X X X X X X X X X X X X X X					
3	End of Trial Pit at 2.700m	2.70 (104.77)		x_^xx					
-									

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Pit Stability: Stable

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Small amount of water seepage at base.

APPENDIX F

INFILTRATION TESTING CERTIFICATE - TPPHSA

ACS Testing Ltd Tel: 01202 622858 testing@acstesting.co.uk www.acstesting.co.uk

SOIL INFILTRATION RATE

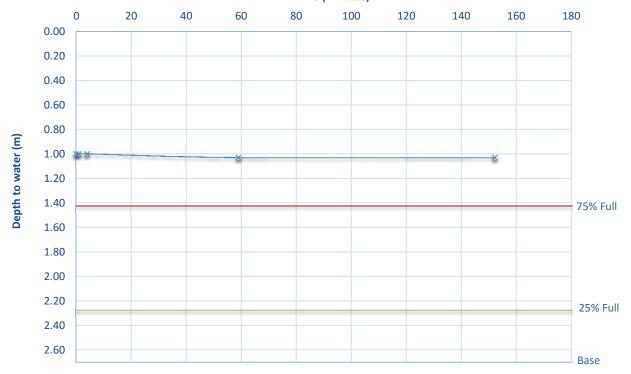
In accordance with BRE Digest 365 "Soakaway Design"

Job Reference: 16-78919 Client: North Somerset Council

Client Reference: TPPHSA Site: Portishead Car Park

Test Number: 1 **Location**: Portishead, Somerset

Date Tested: Parameters Length 1.80 m 13/12/2016 Breadth 0.60 m Depth 2.70 m Technician: Water Level 1.00 m Max Eff. Depth 1.70 m ΑD 0.92 m^3 V_{p75-25}


Weather: $\begin{array}{c|cccc} v_{p75-25} & 0.92 & m^{\circ} \\ a_{p50} & 5.16 & m^{2} \\ t_{p75-25} & 0 & s \\ \end{array}$

Overcast p75% 1.43 m p25% 2.28 m

Time E	lapsed	Depth to Water (m)
Minutes	Seconds	Deptil to water (iii)
0	0	1.00
1	60	1.00
4	240	1.00
59	3540	1.03
152	9120	1.03

Time to drain	Minutes	Seconds
75%	N/A	
25%	N/A	

Time (minutes)

Remarks:

Unable to calculate infiltration rate as water did not reach 25% level.

Soil Infiltration Rate = X ms⁻¹

Approved by: R J Holloway Principal Geo-Environmental Engineer Date: 31/01/2017

APPENDIX G

TRL DCP RESULT CERTIFICATES

Penetration Data Report

Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station

Chainage (km): 3.000 Surface Type: Unpaved

Direction: TPPH03 Thickness (mm): 0

Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm):104Surface Moisture:ModerateTest Date:12/12/2016Moisture adjustment factor:Not adjusted

No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	104	0.00					
2	2	2	134	15.00					
3	1	3	150	16.00					
4	1	4	170	20.00					
5	1	5	191	21.00					
6	1	6	279	88.00					
7	1	7	335	56.00					
8	1	8	380	45.00					
9	1	9	434	54.00					
10	1	10	508	74.00					
11	1	11	577	69.00					
12	1	12	630	53.00					
13	1	13	669	39.00					
14	1	14	703	34.00					
15	1	15	730	27.00					
16	2	17	772	21.00					
17	2	19	810	19.00					
18	2	21	852	21.00					
19	3	24	901	16.33					
20	2	26	947	23.00					

Report Date: 20-Dec-2016 Page 1 of 4

Penetration Data Report

Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station

Chainage (km): 4.000 Surface Type: Unpaved

Direction: TPPH04 Thickness (mm): 0

Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm): 111 Surface Moisture: Wet

Test Date: 13/12/2016 Moisture adjustment factor: Not adjusted

No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	111	0.00	26	1	36	950	39.00
2	1	1	140	29.00					
3	1	2	153	13.00					
4	2	4	169	8.00					
5	3	7	205	12.00					
6	3	10	234	9.67					
7	3	13	277	14.33					
8	2	15	309	16.00					
9	2	17	352	21.50					
10	1	18	382	30.00					
11	1	19	415	33.00					
12	1	20	441	26.00					
13	1	21	467	26.00					
14	1	22	497	30.00					
15	1	23	528	31.00					
16	2	25	589	30.50					
17	1	26	625	36.00					
18	1	27	657	32.00					
19	1	28	690	33.00					
20	1	29	721	31.00					
21	1	30	754	33.00					
22	1	31	790	36.00					
23	2	33	849	29.50					
24	1	34	877	28.00					
25	1	35	911	34.00					

Report Date: 20-Dec-2016 Page 2 of 4

Penetration Data Report

Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station

Chainage (km): 5.000 Surface Type: Unpaved

Direction: TPPH05 Thickness (mm): 0

Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm):67Surface Moisture:ModerateTest Date:12/12/2016Moisture adjustment factor:Not adjusted

No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	67	0.00	26	2	41	830	20.50
2	1	1	102	35.00	27	2	43	875	22.50
3	1	2	130	28.00	28	1	44	900	25.00
4	1	3	157	27.00	29	1	45	924	24.00
5	1	4	188	31.00	30	1	46	943	19.00
6	1	5	211	23.00					
7	1	6	236	25.00					
8	1	7	250	14.00					
9	1	8	270	20.00					
10	2	10	300	15.00					
11	2	12	335	17.50					
12	2	14	374	19.50					
13	2	16	415	20.50					
14	1	17	434	19.00					
15	1	18	453	19.00					
16	1	19	478	25.00					
17	2	21	525	23.50					
18	1	22	550	25.00					
19	2	24	582	16.00					
20	3	27	615	11.00					
21	3	30	649	11.33					
22	3	33	689	13.33					
23	2	35	720	15.50					
24	2	37	750	15.00					
25	2	39	789	19.50					

Report Date: 20-Dec-2016 Page 3 of 4

Penetration Data Report

Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station

Chainage (km): 6.000 Surface Type: Unpaved

Direction: TPPH06 Thickness (mm): 0

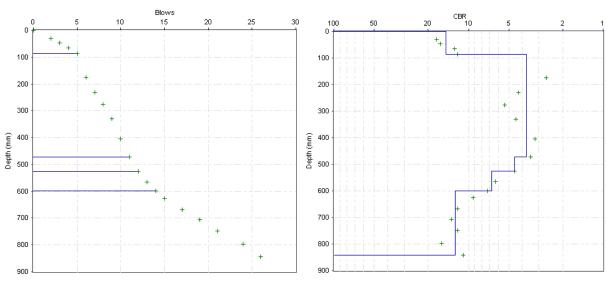
Location/Offset:Lay-by / otherBase Type:Cone Angle:60 degreesThickness (mm):

Zero Error (mm): 45 Surface Moisture: Wet

Test Date: 13/12/2016 Moisture adjustment factor: Not adjusted

No.	Blows	Cumulative	Penetration	Penetration	No.	Blows	Cumulative	Penetration	Penetration
		Blows	Depth (mm)	Rate			Blows	Depth (mm)	Rate
				(mm/blow)					(mm/blow)
1	0	0	45	0.00	26	1	37	792	30.00
2	1	1	73	28.00	27	1	38	822	30.00
3	1	2	95	22.00	28	1	39	850	28.00
4	2	4	127	16.00	29	1	40	883	33.00
5	2	6	151	12.00	30	1	41	917	34.00
6	2	8	172	10.50	31	1	42	954	37.00
7	3	11	200	9.33					
8	3	14	222	7.33					
9	2	16	255	16.50					
10	2	18	283	14.00					
11	2	20	316	16.50					
12	2	22	360	22.00					
13	1	23	381	21.00					
14	1	24	402	21.00					
15	1	25	421	19.00					
16	1	26	446	25.00					
17	2	28	501	27.50					
18	1	29	526	25.00					
19	1	30	562	36.00					
20	1	31	601	39.00					
21	1	32	640	39.00					
22	1	33	680	40.00					
23	1	34	709	29.00					
24	1	35	734	25.00					
25	1	36	762	28.00					

Report Date: 20-Dec-2016 Page 4 of 4


Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station

Chainage (km):3.000Surface Type:UnpavedDirection:TPPH03Thickness (mm):0

Location/Offset: Lay-by / other Base Type:
Cone Angle: 60 degrees Thickness (mm):

Zero Error (mm): 104 Surface Moisture: Moderate
Test Date: 12/12/2016 Moisture adjustment factor: Not adjusted

Layer Boundaries: Chainage 3.000

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to	Position	Strength	SN	SNC	SNP
	Rate	(%)	(mm)	layer bottom		Coefficient			
	(mm/blow)			(mm)					
1	17.40	15	87	87	Base	0.04	0.13	0.13	0.13
2	64.33	4	386	473	Base	0.01	0.16	0.16	0.16
3	53.00	5	53	526	Base	0.01	0.03	0.03	0.03
4	36.50	7	73	599	Base	0.02	0.05	0.05	0.05
5	20.33	13	244	843	Base	0.03	0.32	0.32	0.32

Pavement Strength

	Layer Contribution						
Layer	SN	SNC	SNP				
Surface							
Base	0.69	0.69	0.69				
Sub-Base							
Subgrade							
Pavement Strength	0.69	0.69	0.69				

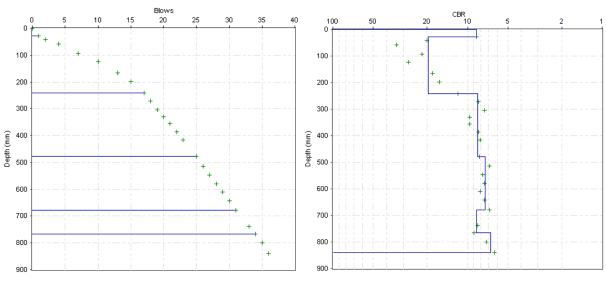
CBR Relationship:

TRL equation: $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$

Report	produced b	V
Report	produced b	y

Report Date: 20-Dec-2016 Page 1 of 4

Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station


Chainage (km): 4.000 Surface Type: Unpaved Direction: TPPH04 Thickness (mm): 0

Location/Offset: Lay-by / other Base Type:
Cone Angle: 60 degrees Thickness (mm):

Zero Error (mm): 111 Surface Moisture: Wet

Test Date: 13/12/2016 Moisture adjustment factor: Not adjusted

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to	Position	Strength	SN	SNC	SNP
	Rate	(%)	(mm)	layer bottom		Coefficient			
	(mm/blow)			(mm)					
1	29.00	9	29	29	Base	0.02	0.03	0.03	0.03
2	13.25	20	212	241	Base	0.05	0.42	0.42	0.42
3	29.63	8	237	478	Base	0.02	0.22	0.22	0.22
4	33.50	7	201	679	Base	0.02	0.16	0.16	0.16
5	29.00	9	87	766	Base	0.02	0.08	0.08	0.08
6	36.50	7	73	839	Base	0.02	0.05	0.05	0.05

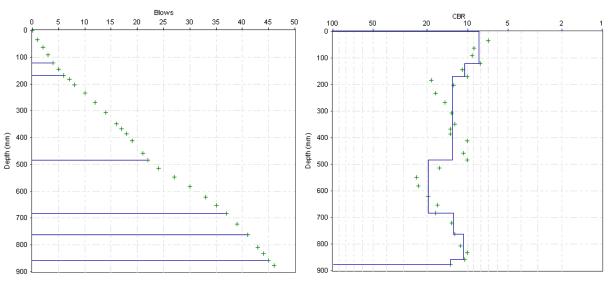
Pavement Strength

	Layer Contribution						
Layer	SN	SNC	SNP				
Surface							
Base	0.96	0.96	0.96				
Sub-Base							
Subgrade							
Pavement Strength	0.96	0.96	0.96				

CBR Relationship:

TRL equation: $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$

Report Date: 20-Dec-2016 Page 2 of 4


Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station

Chainage (km):5.000Surface Type:UnpavedDirection:TPPH05Thickness (mm):0

Location/Offset: Lay-by / other Base Type:
Cone Angle: 60 degrees Thickness (mm):

Zero Error (mm): 67 Surface Moisture: Moderate
Test Date: 12/12/2016 Moisture adjustment factor: Not adjusted

Layer Boundaries: Chainage 5.000

Layer Boundaries Chart

CBR Chart

Layer Properties

No.	Penetration	CBR	Thickness	Depth to	Position	Strength	SN	SNC	SNP
	Rate	(%)	(mm)	layer bottom		Coefficient			
	(mm/blow)			(mm)					
1	30.25	8	121	121	Base	0.02	0.11	0.11	0.11
2	24.00	10	48	169	Base	0.03	0.05	0.05	0.05
3	19.63	13	314	483	Base	0.03	0.43	0.43	0.43
4	13.33	20	200	683	Base	0.05	0.39	0.39	0.39
5	20.00	13	80	763	Base	0.03	0.11	0.11	0.11
6	23.50	11	94	857	Base	0.03	0.11	0.11	0.11
7	19.00	13	19	876	Base	0.04	0.03	0.03	0.03

Pavement Strength

	Layer Contribution						
Layer	SN	SNC	SNP				
Surface							
Base	1.22	1.22	1.22				
Sub-Base							
Subgrade							
Pavement Strength	1.22	1.22	1.22				

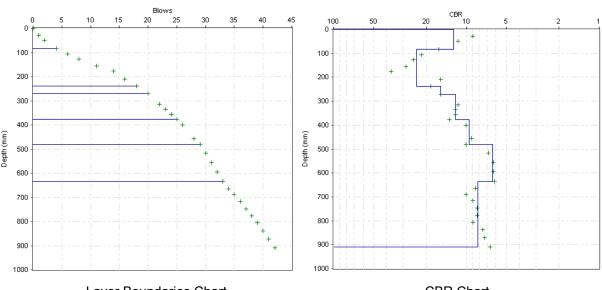
CBR Relationship:

TRL equation: $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$

Report	produced by	·
Itopoit	produced	

Report Date: 20-Dec-2016 Page 3 of 4

Project Name: 16-78919 - TRL DCP - North Somerset Council - Portishead Station


Chainage (km):6.000Surface Type:UnpavedDirection:TPPH06Thickness (mm):0

Location/Offset: Lay-by / other Base Type:

Cone Angle: 60 degrees Thickness (mm): Zero Error (mm): 45 Surface Moisture:

Test Date: 13/12/2016 Moisture adjustment factor: Not adjusted

Layer Boundaries: Chainage 6.000

Layer Boundaries Chart

CBR Chart

Wet

Layer Properties

No.	Penetration	CBR	Thickness	Depth to	Position	Strength	SN	SNC	SNP
	Rate	(%)	(mm)	layer bottom		Coefficient			
	(mm/blow)			(mm)					
1	20.50	12	82	82	Base	0.03	0.11	0.11	0.11
2	11.14	24	156	238	Base	0.06	0.36	0.36	0.36
3	16.50	16	33	271	Base	0.04	0.05	0.05	0.05
4	21.00	12	105	376	Base	0.03	0.13	0.13	0.13
5	26.25	10	105	481	Base	0.03	0.11	0.11	0.11
6	38.50	6	154	635	Base	0.02	0.11	0.11	0.11
7	30.44	8	274	909	Base	0.02	0.24	0.24	0.24

Pavement Strength

	Layer Contribution								
Layer	SN	SNC	SNP						
Surface									
Base	1.11	1.11	1.11						
Sub-Base									
Subgrade									
Pavement Strength	1.11	1.11	1.11						

CBR Relationship:

TRL equation: $log_{10}(CBR) = 2.48 - 1.057 \times log_{10}(Strength)$

Report produced by

Report Date: 20-Dec-2016 Page 4 of 4

APPENDIX H

LANKELMA LTD CPTu REPORT – P-106539-1

LANKELMA Limited

Cold Harbour Barn, Cold Harbour Lane, Iden
East Sussex, TN31 7UT
T: +44 (0)1797 280050
E: info@lankelma.com
www.lankelma.com

PORTISHEAD

SOIL INVESTIGATION

CPT REPORT

Cone Penetration Test Standard Data Interpretation

Project Ref.: P-106539-1

PORTISHEAD

PROJECT:	Portishead
CLIENT:	ACS Testing

FIELDWORK

CPT Rig	17.9 tonne track-truck CPT unit (UK20)
Date Fieldwork Started	16 th December 2016
Date Fieldwork Completed	16 th December 2016
Lankelma's Representative	Chris Dimelow
Client's Representative	Anthony Elkins

REPORT

Status	Revision	Action	Date	Name		
Final		Completed	16/12/16	Chris Player		
	00	Checked	19/12/16	Emma Stickland		
		Approved	19/12/16	Joseph Hobbs		

CONTENTS

1	INTRODUCTION	1
1.1	COMPLETED WORKS	1
2	FIELDWORK	1
2.1	CONE PENETRATION TESTING	1
2.2	FIELD LOGISTICS	
3	RAW DATA REDUCTION AND PRESENTATION	2
4	INTERPRETATIVE DATA	2
4.1	IN-SITU STRESS CONDITIONS	2
4.2	SOIL BEHAVIOUR TYPE	2
4.3	SOIL BEHAVIOUR TYPE – IC INDEX	3
4.4	GEOTECHNICAL PARAMETERS	3
4.4.1	RELATIVE DENSITY	3
4.4.2	UNDRAINED SHEAR STRENGTH	4
4.4.3	OVERCONSOLIDATION RATIO	4
4.4.4	SENSITIVITY	5
5	CPT DATA INTERPRETATION NOTES	6
6	REFERENCES	8
SUMN	MARY TABLES	
Table	1 CPT Test Summary	9
APPE	NDICES	
APPEN	NDIX A General Information	
APPFN	NDIX B Cone Penetration Test Results - Raw Data Plots	

APPENDIX C Standard Interpretation Results

1 INTRODUCTION

At the request of ACS Testing, a CPT led soils investigation was carried out on project *Portishead*.

Site location:

Land at Harbour Road Portishead Bristol BS20 7BI

1.1 COMPLETED WORKS

- 7 nr. Piezocone Tests (CPTu);
- Factual report plus standard geotechnical data interpretation.

The *Summary Tables* section contains tabulated summaries of the works done together with analysis results where necessary.

2 FIELDWORK

2.1 CONE PENETRATION TESTING

Cone Penetration Tests were performed with a 17.9 tonne track-truck mounted CPT unit (UK20) equipped with a 17 tonne capacity hydraulic ram set.

An electric penetrometer of a type conforming to the requirements of BS ISO 22476-1:2012 was used on this project. Cone measurements included cone tip resistance, friction sleeve resistance and dynamic pore water pressure (Piezometer) sampled at a 10mm resolution. Cone maintenance, checks and calibrations were carried out in accordance with recommendations of BS8422:2003, and ASTM E74-13a as referenced by the British Standard. The management of calibration records is in accordance with ISO10012. Copies of all calibration certificates for the cones used are presented in Appendix A. Refer to the cone calibration certificates for the cone type and dimensional data.

The piezometer filter element was located in the u_2 position between the cone and friction sleeve and was replaced after every test. The pore pressure system was saturated with de-aired 1000 cSt silicone fluid.

2.2 FIELD LOGISTICS

The client was responsible for the positioning and re-survey of all investigative locations.

PORTISHEAD

The target depth for the investigation was 10 m. Table 1 details the final test depths and reasons for test termination (*Refusal Factor*). Termination depths were advised to, and agreed with, the **client's on**-site representative.

3 RAW DATA REDUCTION AND PRESENTATION

The CPT results are presented in Appendix B. The corrected cone resistance (q_t) , local side friction, pore water pressure, friction ratio and inclination are all presented against depth and elevation in accordance with recommendations of the BS ISO 22476-1:2012. CPT data and the associated derived geotechnical parameters are included in the AGS 3.1 and 4.0 data files provided.

Penetration length readings are corrected for inclination and sleeve readings are depth corrected for the dimensional offset between cone tip and sleeve during post processing. An additional shift of -80mm is applied to the sleeve to **account for tip failure zone offset (see 'CPT** Interpretation Notes'). 'Rod spikes' (artefacts of the 1 m interval pause for rod string addition) are filtered from the cone tip and sleeve data.

4 INTERPRETATIVE DATA

4.1 IN-SITU STRESS CONDITIONS

The in-situ total and effective stress states are calculated based on an assumed total unit weight of soil (17 kN/m³ above the inferred piezometric surface and 18 kN/m³ below) and a hydrostatic pore pressure state. The depth of the piezometric surface has been estimated for each specific location based on interpretation of piezocone measurements or other observations by Lankelma. Where location specific information was not available, the depth has been assumed at a generic 2.0 mBGL based on other locations or information provided by the client. Hydrostatic pore pressure data are applied in calculation of stress normalised geotechnical parameters.

In the event that complex groundwater regimes are clearly identified, multiple piezometric surfaces will be applied.

4.2 SOIL BEHAVIOUR TYPE

The Soil Behaviour Type (SBT) has been interpreted using the Robertson 1990 classification system based on the stress normalised cone resistance (Qt) and normalised friction sleeve resistance (Fr).

(See glossary of terms and symbols Appendix A)

The results are presented on the plots of Appendix C - Standard Interpretation Results.

4.3 SOIL BEHAVIOUR TYPE - IC INDEX

The Soil Behaviour Type (SBT) is presented as the Soil Behaviour Type Index, *Ic*, for both stress-normalised and non-normalised evaluations according to the charts of Robertson (1998 & 2010) applicable to predominantly silicate soils.

The I_c provides a continuous profile of SBT variation with depth such that the end user may choose appropriate stratigraphic subdivisions. The basis of I_c and its approximation of the original chart classification zones may be seen from Appendix A figure 'CPT Soil Behaviour Type Chart'. The loss of fidelity is dominantly in zones 1 (sensitive fine grained) and zones 8 & 9 (overconsolidated or cemented). To account for this approximation a profile of sensitivity and OCR is provided in the Standard Interpretation Results (see section 'Geotechnical Parameters').

Non-stress normalised SBT index I_C :

$$I_c = \left[\left(3.47 - \log(\frac{q_c}{\sigma_{atm}})^2 \right)^2 + (logR_f + 1.22)^2 \right]^{0.5}$$

Stress-normalised SBT index I_C:

$$I_c = ((3.47 - \log Q_t)^2 + (\log F_r + 1.22)^2)^{0.5}$$

(See glossary of terms and symbols Appendix A)

The results are presented on the plots of Appendix C - Standard Interpretation Results.

4.4 GEOTECHNICAL PARAMETERS

4.4.1 RELATIVE DENSITY

The relative density of sands is calculated based on an empirical relationship proposed by Jamiolkowski *et al.* (2001) based on a large database of undisturbed frozen samples and calibration chamber tests. The expected accuracy may be evaluated from the figures presented below.

$$D_r = 100 \left[0.268 \cdot \ln \left(\frac{q_t / \sigma_{atm}}{\sqrt{\sigma_{vo}' / \sigma_{atm}}} \right) - k \right]$$

(See glossary of terms and symbols Appendix A - General Information)

K = Compressibility dependant constant. For medium compressibility = -0.675 (applied generic value), for high compressibility and sands with significant carbonate or calcareous composition <=1, for low compressibility >=-2.0

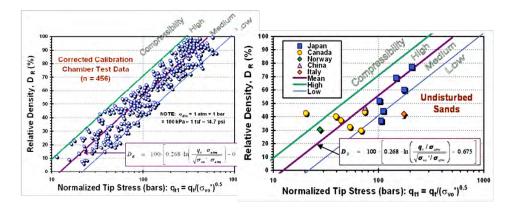


Figure 4-1 Relative density with normalised tip stress and sand compressibility from calibration chamber tests (left) and undisturbed frozen samples (right). Jamiolkowski *et al.* (2001) (Reproduced from NCHRP Synthesis 368 (2007)).

The results are presented on the plots of Appendix C - Standard Interpretation Results.

4.4.2 UNDRAINED SHEAR STRENGTH

S_u is estimated from the net cone tip resistance using the following equation:

$$s_u = \frac{(q_c - \sigma_{vo})}{N_\iota}$$
 (Lunne et al. (1981))

where N_k is an empirical cone factor.

Research has shown that the cone factor N_k varies between 11 and 21 for normally to moderately overconsolidated soils with an average value of 14. The N_k factor tends to increase with plasticity and decrease with sensitivity. S_U values are presented for N_k factors of 15 and 20.

The results are presented on the plots of Appendix C - Standard Interpretation Results.

4.4.3 OVERCONSOLIDATION RATIO

The preconsolidation stress of clays is calculated based on the method proposed by Mayne (1995) and Demers and Leroueil (2002):

$$\sigma_p' = k \cdot (q_t - \sigma_{vo}) = 0.33(q_t - \sigma_{vo})$$
$$OCR = \sigma_p' / \sigma_{vo}'$$

(See glossary of terms and symbols Appendix A)

The factor k may be expected to lie within the range 0.2 to 0.5 with 0.33 representing the average. Higher values of k are recommended for aged heavily overconsolidated clays (Robertson, 2009) and may be calibrated accordingly. The figure below demonstrates the

expected accuracy of the above methods in prediction of preconsolidation stress, of particular note is the under prediction for fissured clays.

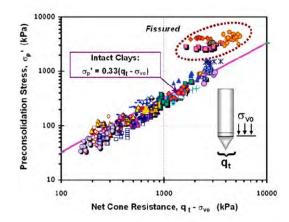


Figure 4-2 Preconsolidation stress from net cone resistance in clays (Reproduced from Mayne (2007)).

4.4.4 SENSITIVITY

The sensitivity of the soil, as defined by the ratio of undrained shear strength to remoulded shear strength, is calculated using the factored normalised cone resistance (S_u) and remoulded shear strength taken as equal to the direct friction sleeve measurement:

$$s_t = 0.073 \cdot \frac{q_t - \sigma_{v_0}}{f_s}$$
 (Mayne (2007))

(See glossary of terms and symbols Appendix A - General Information)

The results are presented on the plots of Appendix C - Standard Interpretation Results.

5 CPT DATA INTERPRETATION NOTES

Provided below is an inexhaustive set of cautionary notes on interpretation of the acquired CPT data with reference to examples within the dataset where appropriate.

SOIL BEHAVIOUR TYPE

The soil behaviour type (SBT) as defined by Robertson $et\ al.$ (1986) is not intended to replace soil classification based on particle size fractions. Rather, the SBT will generally show bias in the classification towards the soil fraction that dominates soil behaviour in response to cone penetration (Cone tip: analogous to bearing capacity failure, friction sleeve: analogous to remoulded S_U or simple shear). In general the stress-normalised SBT will be more accurate, but may be less reliable at very shallow depths (1-2 m) due to low confining stresses.

DRAINED AND UNDRAINED SOIL BEHAVIOUR

Geotechnical parameters appropriate for drained and undrained cone penetration conditions are derived for drained and undrained soil behaviour types (SBTs) respectively, however to account for uncertainty in the SBT correlation with drainage behaviour, all parameters are derived over the range of mixed soil types 'Silt Mixtures' and 'Sand Mixtures' or Ic 2.05-2.95 (Robertson, 2010). For partially drained conditions, or for partially saturated low permeability soils, error will be introduced within derived parameters.

Piezocone dynamic pore water pressures behaviour, dissipations or other site specific observations may be used to identify the appropriate limits of application. Dissipations to t_{50} exceeding 30 seconds indicate undrained penetration behaviour (Kim *et al.*, 2010).

DYNAMIC PORE PRESSURE DATA

During penetration, strong dilation in shear at the cone shoulder may result in cavitation and desaturation of the piezo system and may take time to recover (up to 1 m penetration). Penetration through soils of partial saturation will provide unrepresentative readings and may desaturate the piezo system introducing variable error.

CONE TIP AND SLEEVE OFFSET

The accuracy of the SBT, over thin layers and at layer boundaries, is sensitive to offset error in the friction ratio. Penetration through zones of anisotropic soil stiffness may lead to offset of the cone tip and sleeve readings due to variation in the tip failure zone shape/depth. The friction ratio is often inaccurate in heavily disturbed soils with a 'blocky' macro fabric. An example of the offset effect on the friction ratio may be seen for CPT02 at 0.80 m.

For this investigation a friction sleeve depth offset correction of -80mm was applied together with a 5 data point moving average on the friction ratio to minimise the influence of this effect on derived parameters.

CONE TYPE

The reference cone type has a 10 cm² projected cone tip area and 150 cm² friction sleeve area, however it is common to use the larger 15 cm² cone with 225 cm² friction sleeve area for improved sensitivity and penetration depth potential. Use of the 15 cm² cone will have the following known influences on data with respect to the reference 10 cm²:

- More pronounced transitions zones and thin layer effects (larger zone of influence and failure zone).
- Possible marginal increase in u₂ position dynamic pore pressures during undrained/partially drained penetration.

TRANSITION ZONES AND THIN LAYER EFFECTS

During penetration at the boundary between soils of contrasting stiffness, a transition zone is often evident prior to mobilization of the true soil stiffness. These should be cautiously ignored in assessment of soil behaviour type and parameter evaluation. Where the stiff layer is thin (<~0.5m) the true stiffness will not be fully mobilised. The effect for thin low stiffness layers is less significant. Procedures for thin-layer effect correction are provided by Robertson and Wride (1998). In choosing characteristic values of the tip, sleeve and derived parameter results, large scale peak and trough values may be more representative of the local value.

GRAVELS

The presence of gravel or larger clasts in a soil is often characterised by short peaks in the CPT tip and sleeve readings, possibly with associate inclinometer 'shake' and/or sharp reductions in pore water readings due to dilation effects. Frequent gravels in soft or loose soils may generate highly erroneous friction ratio values. Where gravels are matrix supported the tip and sleeve peaks may be ignored or filtered in choosing characteristic values for bulk behaviour. Illustration of behaviour indicative of gravels is displayed for CPT03 at 0.50 m.

6 REFERENCES

Agrawal, G., Pekin, O. & Chandra, D. 2010. Evaluating relative compaction of fills using CPT. 2nd International Symposium on CPT, Huntington Beach, CA, USA. Volume 2&3: Technical Papers, Session 3: Applications, Paper No. 3-46.

ASTM E74-13a (2013), Standard Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines, ASTM International, West Conshohocken, PA.

Baldi, G., Bellotti, R., Ghionna, V.N., Jamiolkowski, M. and Pusqualini, E. (1986) "Interpretation of CPT's and CPTU's, 2nd Part: Drained Penetration of Sands". Proceedings of the 4th International Geotechnical Seminar, Singapore. pp. 143-156.

British Standards Institution (2003) BS 8422:2003, Force measurement - Strain gauge load cell systems - Calibration method. London: British Standards Institution.

Houlsby, G.T. and Teh, C.I. (1988) "Analysis of the Piezocone in Clay". Proceedings of the International Symposium on Penetration Testing (ISOPT-1), Orlando, Vol. 2, pp. 777-783. Balkema Pub., Rotterdam.

ISO 10012: 2003 Measurement management systems - Requirements for measurement processes and measuring equipment. New Delhi: Bureau of Indian Standards (2003).

ISO 22476-1:2012 Geotechnical investigation and testing - Field testing - Part 1: Electrical cone and piezocone penetration test. New Delhi: Bureau of Indian Standards (2012).

ISSMGE, 1999. International reference test procedure for the cone penetrometer test CPT and the cone penetration test CPTU, Report of ISSMGE TC16 on Ground Property Characterisation for In situ Testing, In *Proceedings of the 12th European conference on Soil Mechanics and Geotechnical Engineering* 3:2195-222 (1999).

Jamiolkowski, M., LoPresti, D.C.F., and Manassero, M. (2001) "Evaluation of Relative Density and Shear Strength of Sands from Cone Penetration Test and Flat Dilatometer Test". Soil Behaviour and Soft Ground Construction (GSP119), American Society of Civil Engineers, pp. 201-238. Reston, Va. 2001

Kim, K., Prezzi, M., Salgado, R., and Lee, W. (2008) "Effect of Penetration Rate on Cone Penetration Resistance in Saturated Clayey Soils", Journal of Geotech. Geoenviron. Eng., Vol. 134(8), pp. 1142-1153.

Kulhawy, F.H. and Mayne, P.W. (1990) "Manual on Estimating Soil Properties for Foundation Design". Report EPRI EL-6800 Research Project 1493-6, Electric Power Research Institute, Palo Alto, CA, pp. 306.

Ladd, C.C. and DeGroot, D.J. (2003) "Recommended Practice for Soft Ground Site Characterization: Arthur Casagrande Lecture". Soil & Rock America 2003 (Proceedings. 12th Pan American Conference on Soil Mechanics and Geotechnical Engineering, Boston, MA). Verlag Glückauf, Essen, Germany. pp. 3-57.

Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997) "Cone Penetration Testing in Geotechnical Practice" Blackie Academic, New York 1997.

Lunne, T. and Kleven, A. (1981) "Role of CPT in North Sea Foundation Engineering". Session at the ASCE National Convention: Cone Penetration Testing and Materials. pp. 76-107. American Society of Engineers (ASCE).

Mayne, P.W. and Campanella, R.G. (2005) "Versatile Site Characterisation by Seismic Piezocone". Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 2. Millpress, Rotterdam, The Netherlands 2005. pp 721-724.

Mayne, P.W. (2007) "Cone Penetration Testing - A Synthesis of Highway Practice". NCHRP Synthesis 368, Transportation Research Board, Washington, D.C.

Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986) "Use of Piezometer Cone Data". Proceedings of the ASCE Specialty Conference, In Situ '86: Use of In-Situ Testing in Geotechnical Engineering. Blacksburg, pp. 1263-1280, American Society of Engineers (ASCE).

Robertson. P.K., (2010) **"Soil** Behaviour Type from the CPT: an **update"**. 2nd International Symposium on Cone Penetration Testing. Huntingdon Beach, CA, USA.

Robertson, P.K. (2009). Cited in "Guide to Cone Penetration Testing - 6th edition (2015)", pp. 58, Gregg Drilling & Testing, Inc.

Robertson, P.K. (2012). Interpretation of in-situ tests - some insights, Proc. 4th Int. Conf. on Geotechnical & Geophysical Site Characterization, ISC'4, Brazil, 1.

Schmertmann, J., Baker, W., Gupta, R. & Kessler, K. 1986. CPT/DMT OC of Ground Modification at a Power Plant. *Geotechnical Special Publication* 6:985-1001. ASCE.

Sully, J.P., Robertson, P.K., Campanella, R.G. and Woeller, D.J. (1999) "An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils". Canadian Geotechnical Journal. Vol. 36, pp. 369-381.

SUMMARY TABLES

Table 1 CPT Test Summary

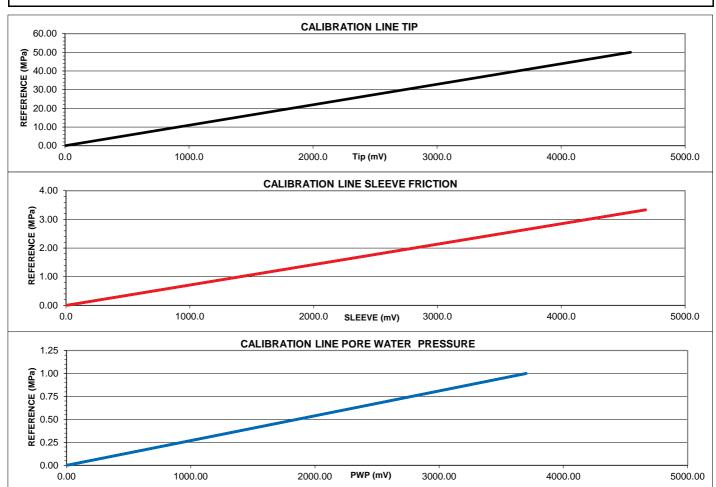
_TEST ID	FINAL DEPTH (mBGL)	Cone ID {C=Cone tip; F=Friction Sleeve; I= Inclination; P = Piezo; S=Subtraction cone; 15/10 = cone projected area (cm2))}	CPT RIG	PRE DRILLED / INSPECTION PIT (m)	CASING DEPTH (m)	REFUSAL FACTOR	SWOITAGISSIG	SEISMIC CONE	SAMPLES	EASTING	NORTHING	ELEVATION (m)	DATE OF TEST	REMARKS
CPT01	10.03	S15-CFIP.819	UK20			Target depth							16/12/2016	
CPT02	10.05	S15-CFIP.819	UK20			Target depth							16/12/2016	
CPT03	0.65	S15-CFIP.819	UK20			Tip load							16/12/2016	
CPT03A	10.03	S15-CFIP.819	UK20			Target depth							16/12/2016	
CPT04	10.03	S15-CFIP.819	UK20			Target depth							16/12/2016	
CPT05	10.00	S15-CFIP.819	UK20			Target depth							16/12/2016	
CPT06	10.03	S15-CFIP.819	UK20			Target depth							16/12/2016	-
CPT03 CPT03A CPT04 CPT05	0.65 10.03 10.03 10.00	\$15-CFIP.819 \$15-CFIP.819 \$15-CFIP.819 \$15-CFIP.819	UK20 UK20 UK20 UK20			Tip load Target depth Target depth Target depth							16/12/2016 16/12/2016 16/12/2016 16/12/2016	

CPT Test Plots are presented in Appendices B & C

APPENDIX A GENERAL INFORMATION

LIST OF FIGURES

Description	Pages Included
Cone Calibration Certificate: S15-CFIP.819	1
Data Sheet: 17.9 Tonne Track-Truck CPT Unit (UK20)	1
CPT Soil Behaviour Type Chart	1
Glossary of Terms	1



CALIBRATION CERTIFICATE

Geopoint-S15-150kN-2MPa

Cone Serial Number: S15-CFIIP.819

REFERENCE INSTRUMENTS:	CONE END RESISTANCE	SLEEVE FRICTION	PORE WATER PRESSURE
ID	5623	5623	4009509
TYPE	Richmond 300	Richmond 300	Druck DPI 104
UNCERTAINTY (±%)	0.1	0.1	0.05
Nominal pressure (MPa,MPa,MPa)	50.00	3.33	1.00
Maximum pressure (MPa,MPa,MPa)	100.00	6.67	2.00
Area (cm²)	15	225	N/A
Sensitivity (mV/MPa)	91.20	1404.54	3699.83
Calibration file scaling factor:			
Nominal cal force (kN, kN, BAR)	75	75	10
Calibration number (mV)	4560	4682	3700
Zero point (mV)	268	103	15
Sensitivity (mV/kN, mV/kN, mV/BAR)	60.803	62.424	369.983
Inclination factors (mV)	X -20°= 564, 0°= 2525, 20°= 4578 / Y -20°= 514, 0°= 2441, 20°= 4498		
Measured alpha factor:	0.69		
Uncertainty (%):			
Reproducibility	0.22	0.09	0.09
Linearity	0.16	0.09	0.10
Hysteresis	0.10	0.05	0.06
Combined expanded (k=2)	0.61	0.96	0.31
Application class	1	1	1

Instrument:	S15-150kN	Location:	Lankelma Calibration Laboratory
Serial Number:	S15-CFIIP.819	Temperature(° C)	20.0
Manufacturer:	Geopoint	Calibration Engineer	A Harman
Date of calibration:	30/11/2016	Calibration Expiry	27/02/2017
Calibra	tion signed and dated by:	Calibrati	on checked and dated by:
	Digitally signed by Alastair Harman DN: cn=Alastair Harman, o=Lankelma Ltd, ou=Instrument Engineer, email=Alastairharman@lankelma.com, c=GB		Digitally signed by Emma Stickland DN: cn=Emma Stickland, o=Lankelma, ou=Engineering, email=emmastickland@lankelma.com, c=G Date: 2016.12.01 14:23:58 Z

c=GB Date: 2016.11.30 16:17:53 Z

UK20 TRACK-TRUCK RIG

Our track-truck is suitable for most geotechnical sites. This rig is driven as a self-contained HGV to site where it can deploy its tracks to cope with soft or uneven terrain.

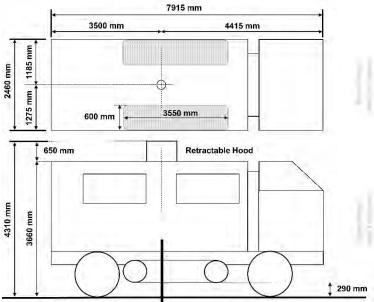
The track-truck can be driven from an on-board remote control either from the cabin or externally, and complies with Euro 4 emission standards for use in London's low emissions zones (LEZ).

Performance Rates

An expected 120 to 150 m of standard CPTu testing can be executed in a day (dependent on site conditions and access).

Applications

- Specialist testing
 - Installations
- Sampling

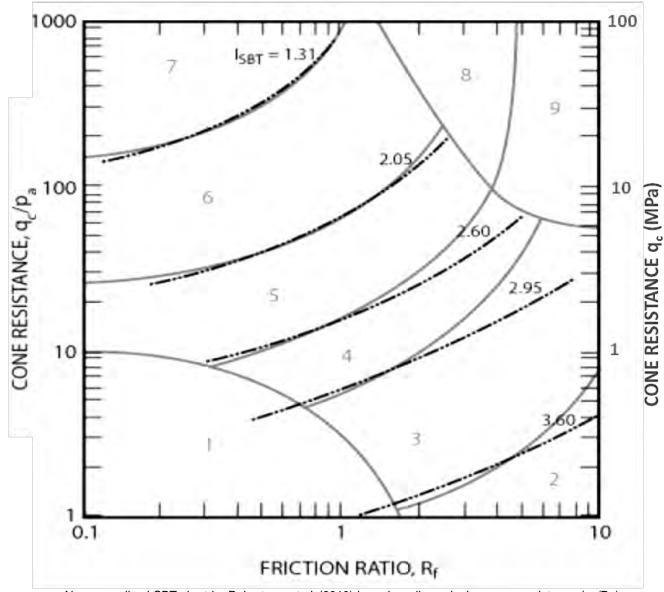

- Seismic
- VWP
- MOSTAP

- Pressuremeter
- Piezometer
- Shelby

- Magnetometer
- Inclinometer
- Video cone
- Push-in Vane

TECHNICAL DETAILS

Rig Weight	17.9 T
Maximum Operating Ram Capacity	17.5 T
Maximum Travelling Speed	86 km/h
Track Material	Steel
Track Length	3.55 m
Track Width	0.60 m
Jack Plate Dimensions	Tracks act as jacks
Jack Arrangements	1 nr. on each side
Maximum Ground Clearance on Jacks	0.29 m
Maximum Ground Bearing Pressure	Wheels - 300 kPa Tracks - 48 kPa
Maximum Testing Gradient	10 degrees
Maximum Traversing Gradient	30 degrees (operator assessed)
Noise Output at 2 m	Testing – 69.5 dBA Driving – 78.7 dBA
Clamp Arrangement	Hydraulic Catching – Semi Automatic
Ram Stroke	1.2 m
Maximum Casing Size	55 mm



www.lankelma.com

Tel: +44 (0)1797 280050 Fax: +44 (0)1797 280195 Email: info@lankelma.com

CPT SOIL BEHAVIOUR TYPE CHART

Non-normalised SBT chart by Robertson *et al.* (2010) based on dimensionless cone resistance (qc/Pa) and friction ration, Rf, showing contours of lc index. The chart is also applicable to stress-normalised tip/sleeve values Q_t and F_r .

Zone	Soil Behaviour Type (SBT)		
1	Sensitive fine-grained	6	Sands: clean sand to sandy silt
2	Clay – organic soil	7	Dense sand to gravelly sand
3	Clays: Clay to silty clay	8	Stiff sand to clayey sand*
4	Silt mixtures: clayey silt to silty clay	9	Stiff fine grained*
5	Sand mixtures: Silty sand to sandy silt	*	Overconsolidated or cemented

GLOSSARY OF CPT TERMS AND SYMBOLS

SYMBOLS

- **Cone resistance.** The total force acting on the cone Q_c , divided by the projected area of the cone, A_c ; ($q_{c=}Q_c/A_c$).
- f_s :- Friction sleeve resistance. The total frictional force acting on the friction sleeve, F_{s_1} divided by its surface area, $A_s.f_s = F_s/A_s$.
- q_t :- Corrected cone resistance. The cone resistance q_c corrected for unequal pore water pressure effects on the cone face and shoulder.
- **Friction ratio** The ratio, expressed as a percentage, of the sleeve friction, f_s , to the cone resistance, q_c , both measured at the same depth; [$R_f = (f_s/q_c) \cdot 100$].
- Q_t :- Stress normalised cone resistance (Method 1) = $(q_c \sigma_v)/\sigma'_v$
- q_{t1} :- Stress normalised cone resistance (Method 2) = $(q_t)/(\sigma'_v)^{0.5}$
- F_r:- Normalised friction sleeve resistance = $f_s / (q_c \sigma_v)$
- σ_v :- Total overburden stress
- σ'_v:- Effective overburden stress
- $\sigma_{atm.}$ or, P_a :- Reference atmospheric stress = 100kPa
- I_c :- Soil Behaviour Type Index
- **B**_q:- **Pore pressure ratio.** The net pore pressure normalized with respect to the net cone resistance. = $(\mathbf{u}_2 \mathbf{u}_0)/(\mathbf{q}_t \cdot \sigma_v)$

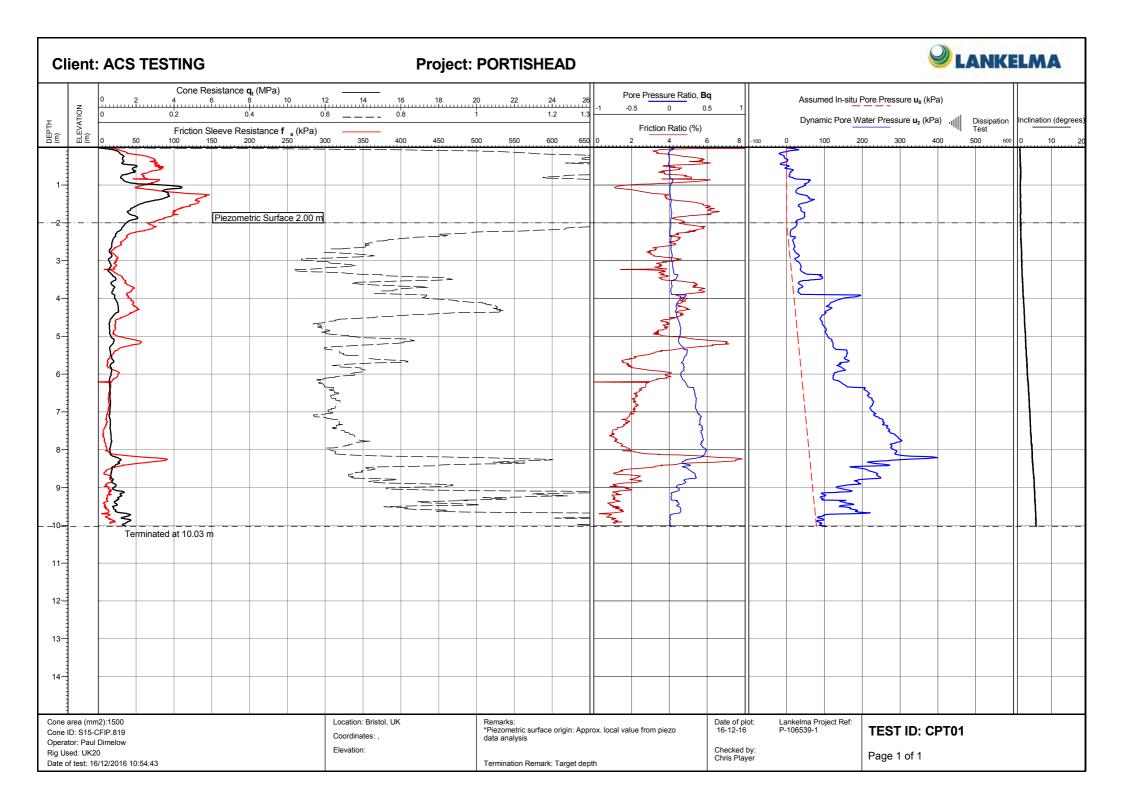
TERMS

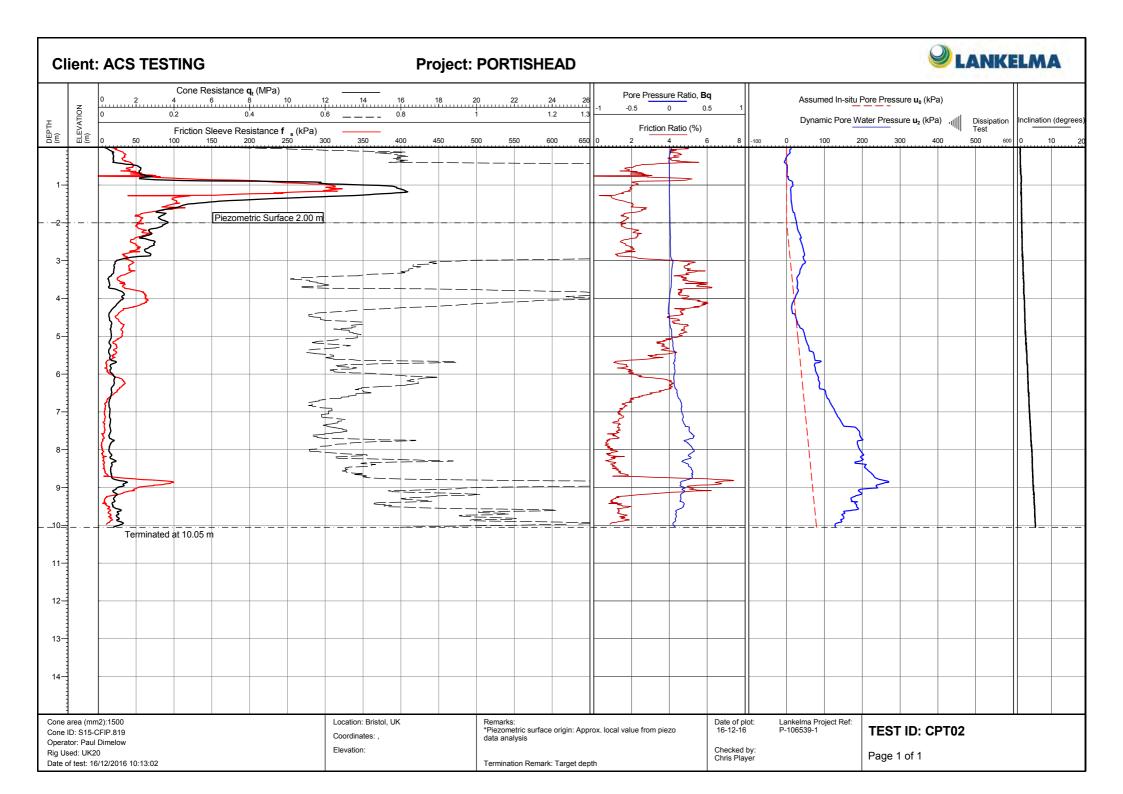
Cone Tip:- The conical tip section of the cone penetrometer.

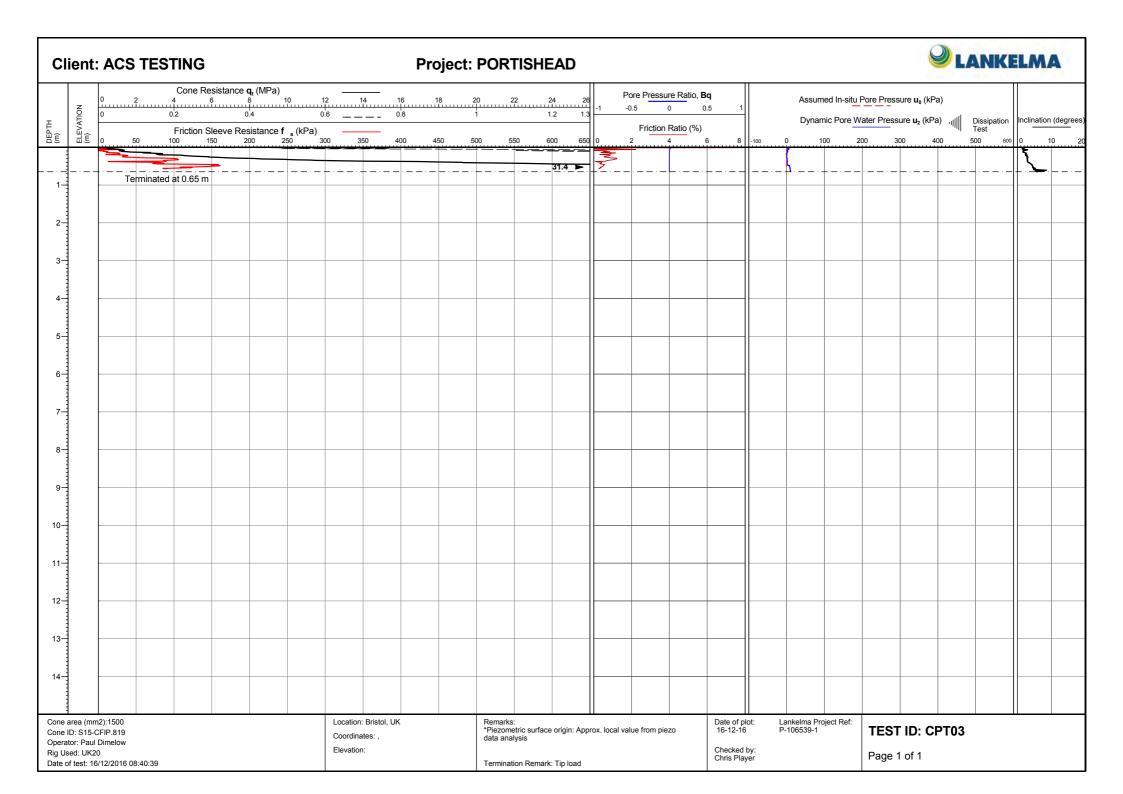
Friction sleeve:- The section of the cone penetrometer upon which the sleeve friction is measured, located behind the cone tip.

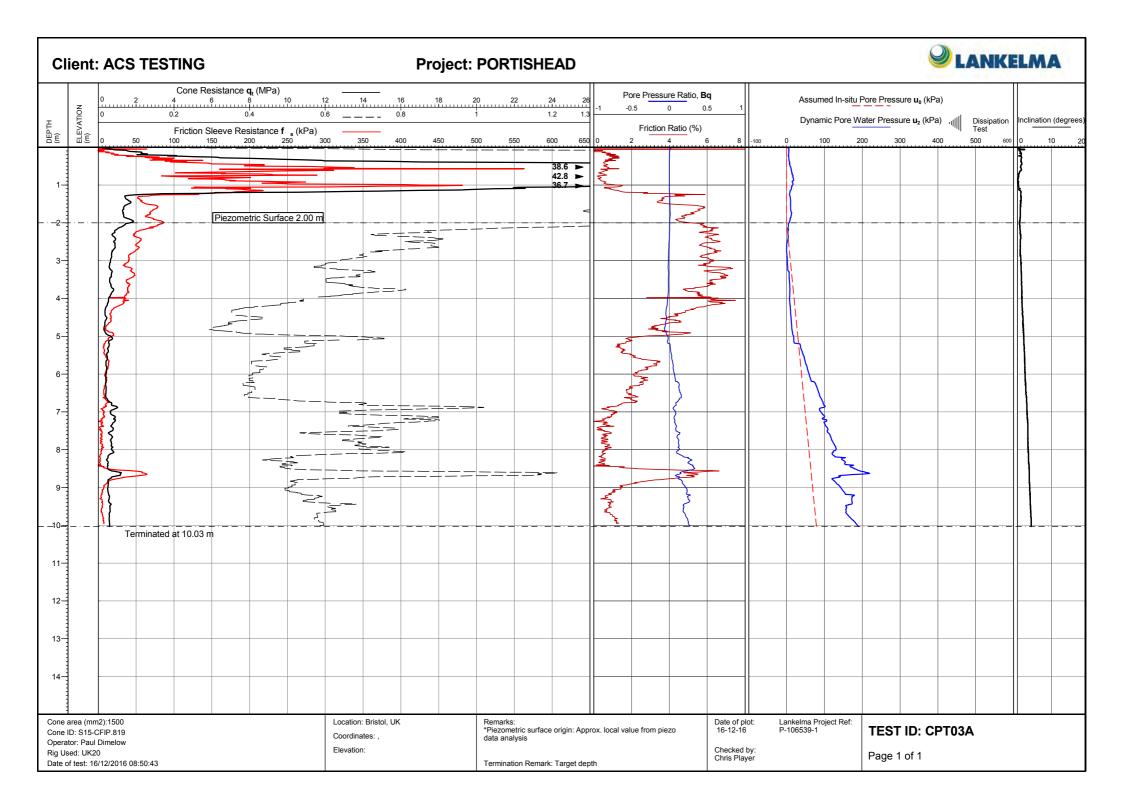
Piezocone:- A cone penetrometer with a pore pressure measurement system.

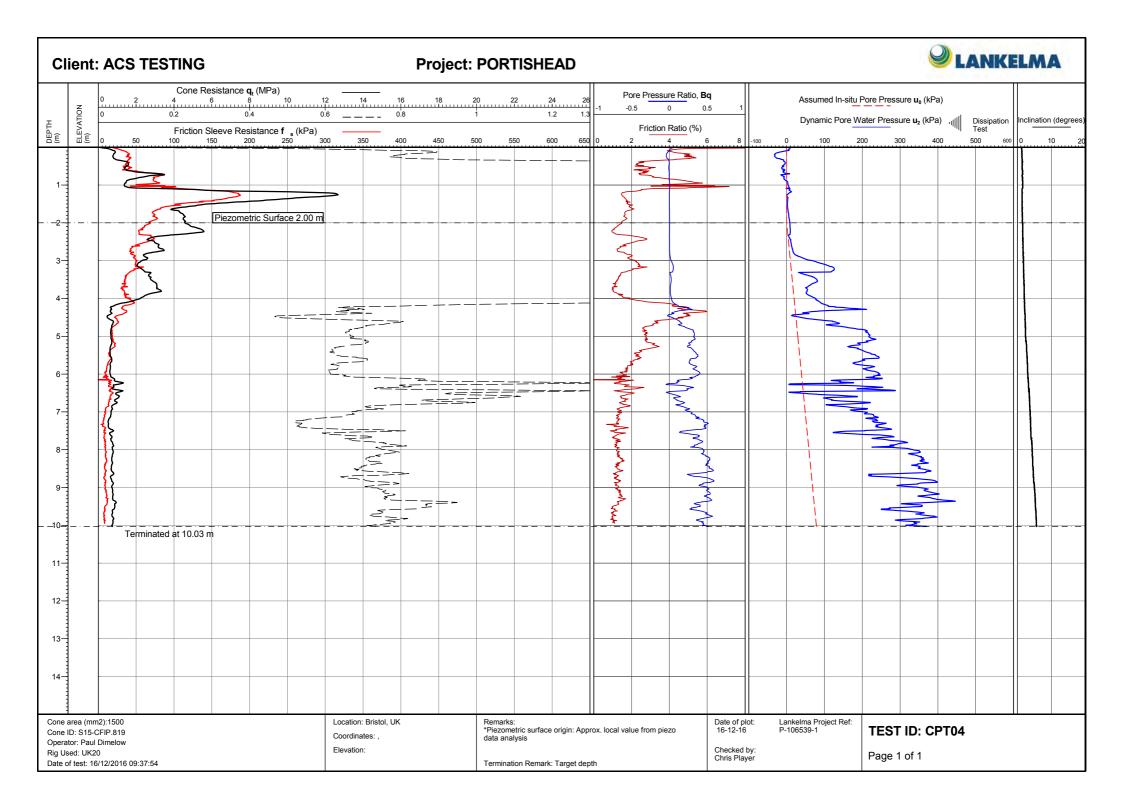
Dynamic pore pressure:- The pore pressure generated during penetration and measured by a pore pressure sensor. u_1 when measured on the conical tip face, u_2 when measured just behind the conical tip.

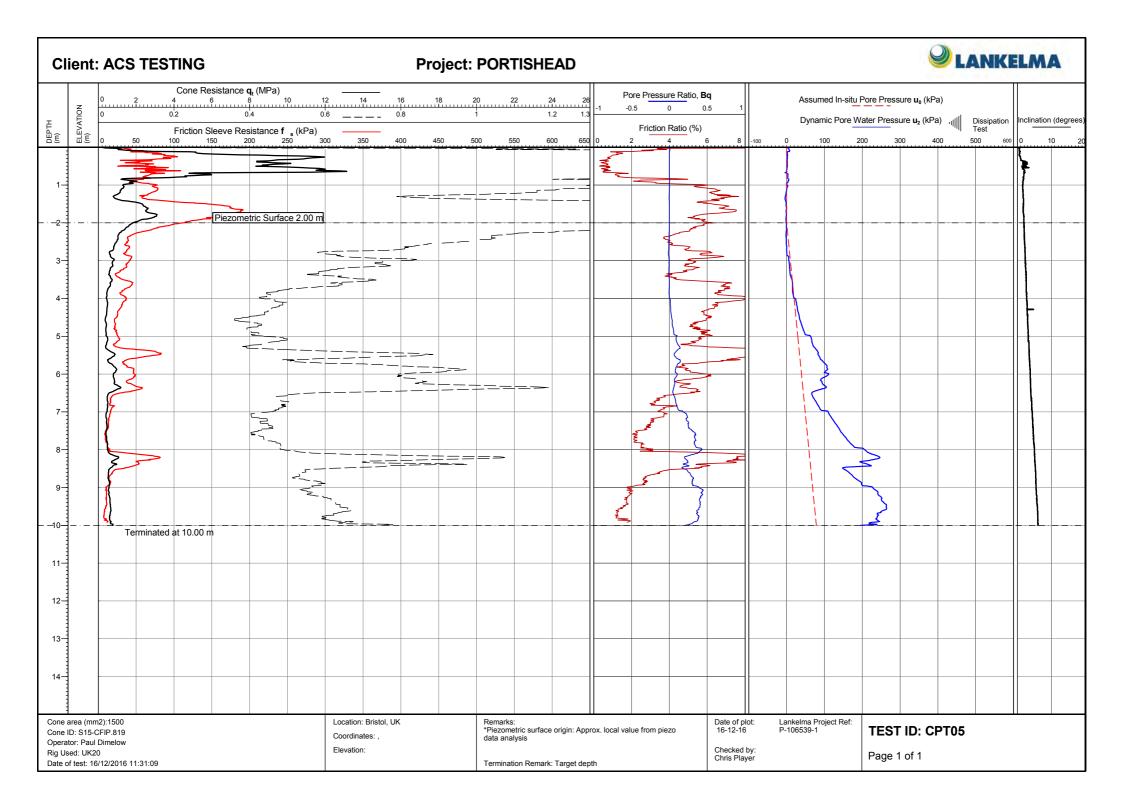


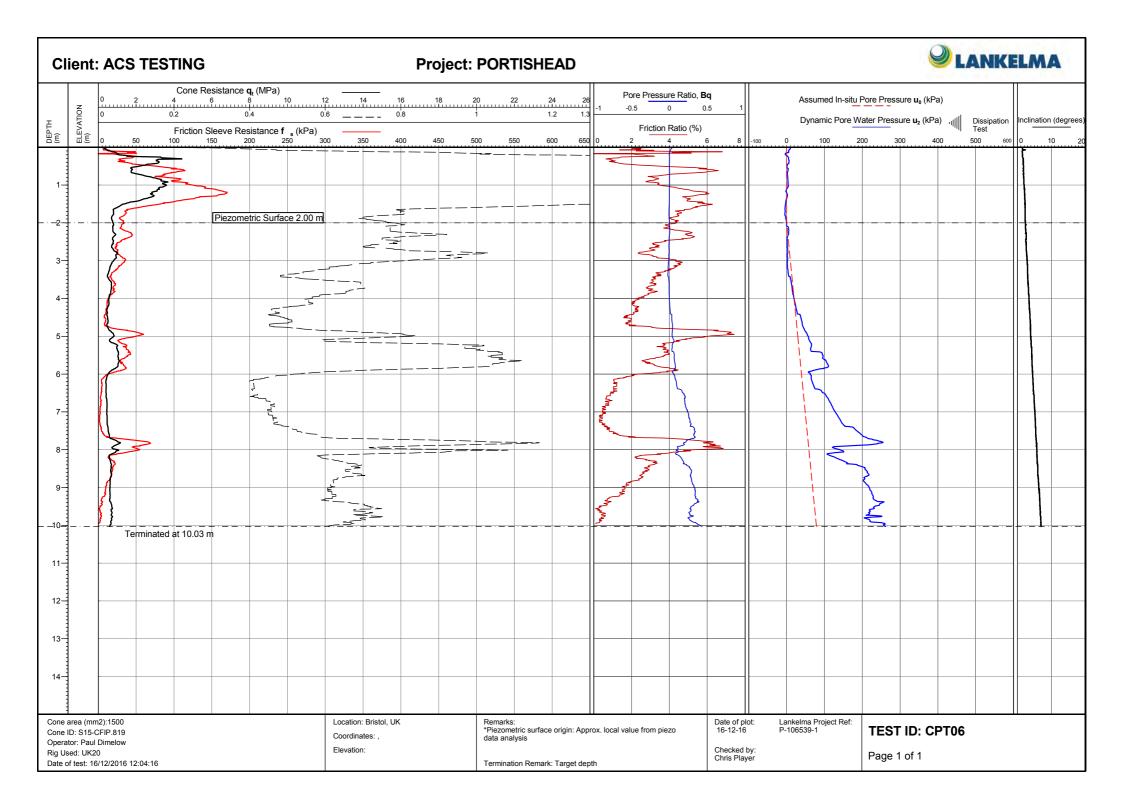

APPENDIX B CONE PENETRATION TEST RESULTS

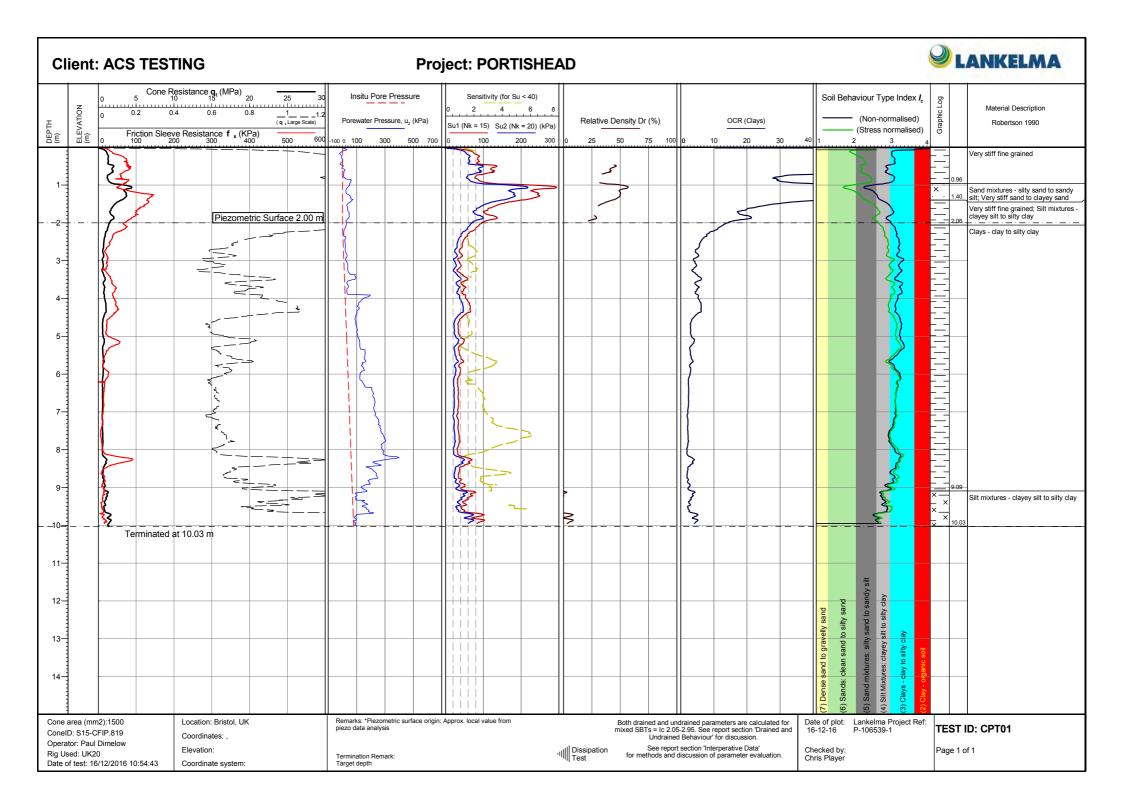

RAW DATA PLOTS

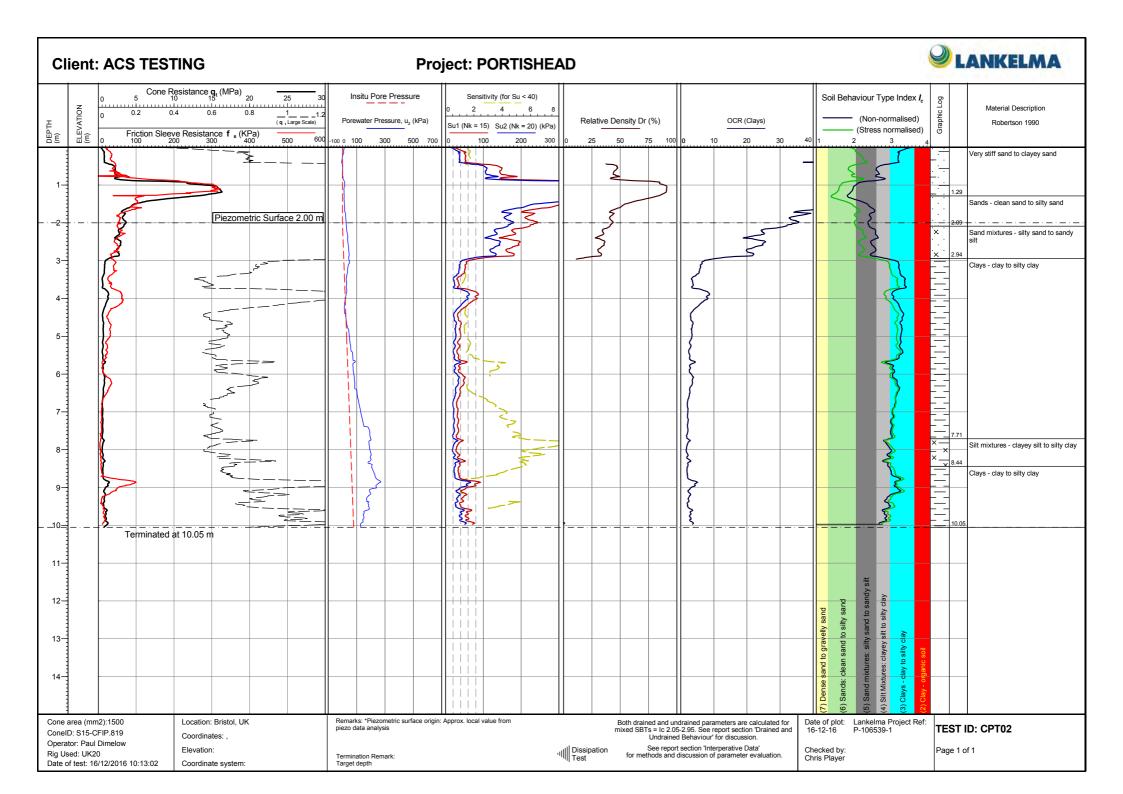

LIST OF FIGURES:

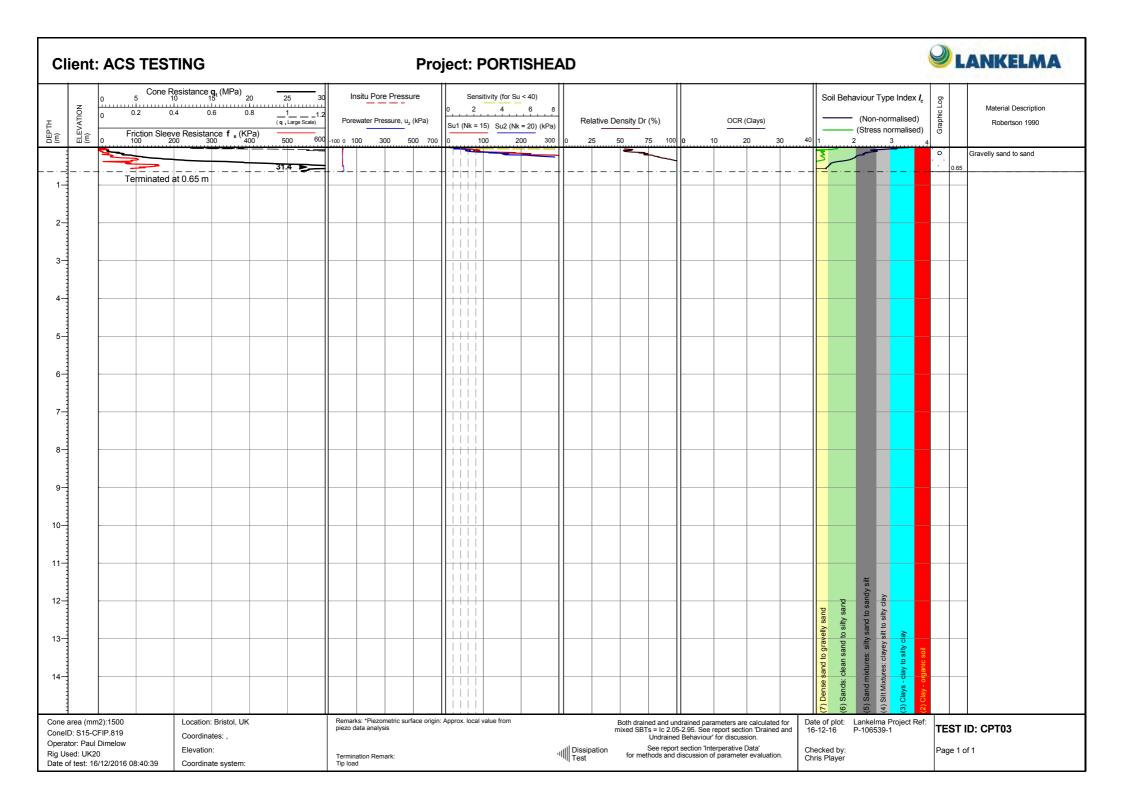

Test ID		Pages included
Cone Penetration Test	CPT01	1
Cone Penetration Test	CPT02	1
Cone Penetration Test	CPT03	1
Cone Penetration Test	CPT03A	1
Cone Penetration Test	CPT04	1
Cone Penetration Test	CPT05	1
Cone Penetration Test	CPT06	1

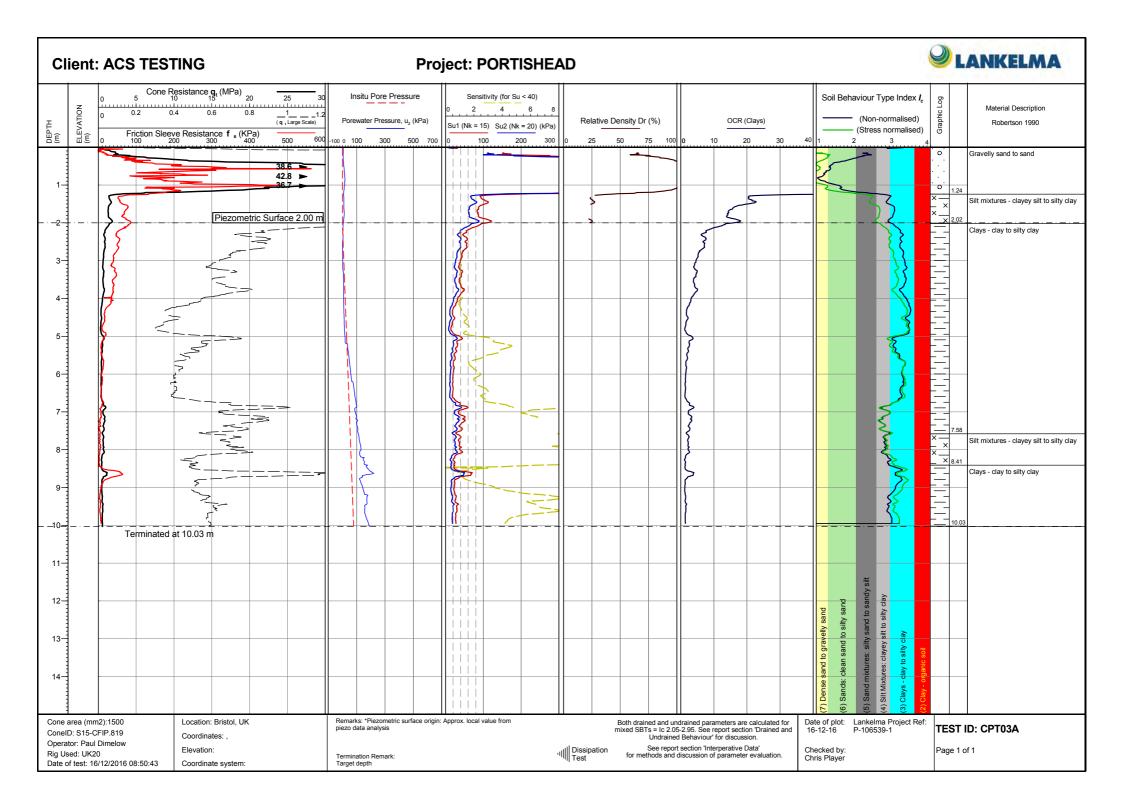


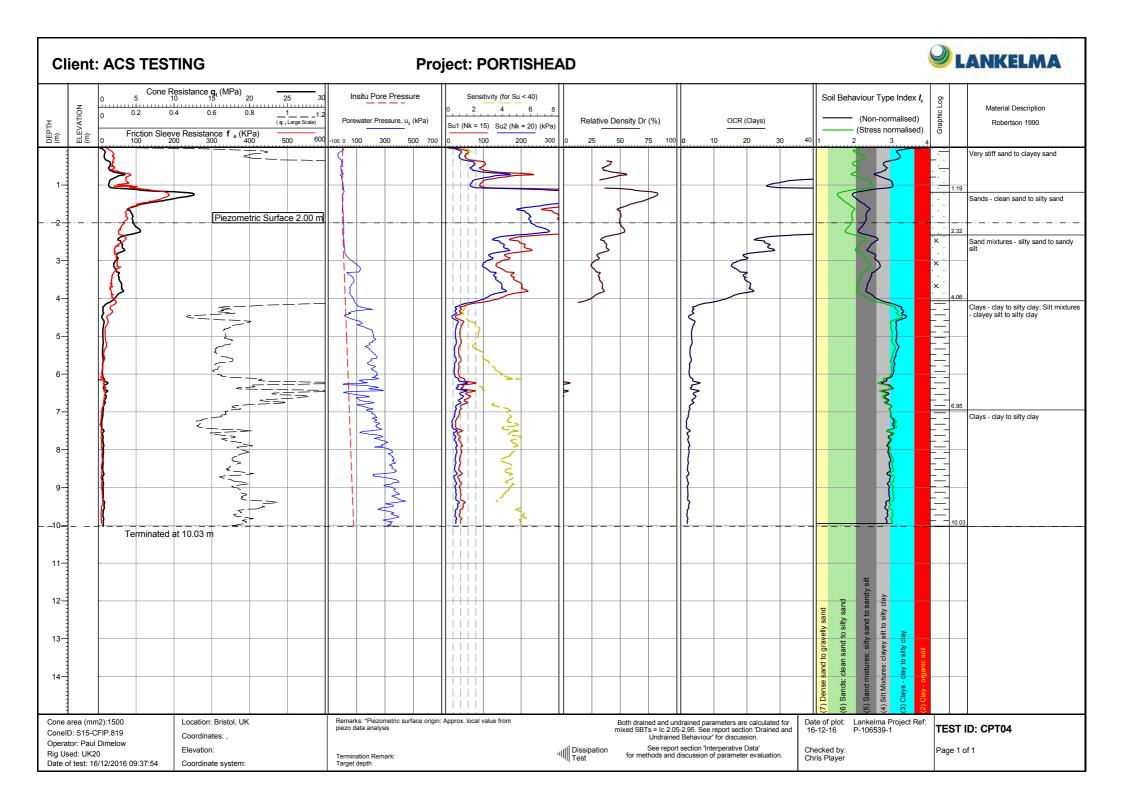


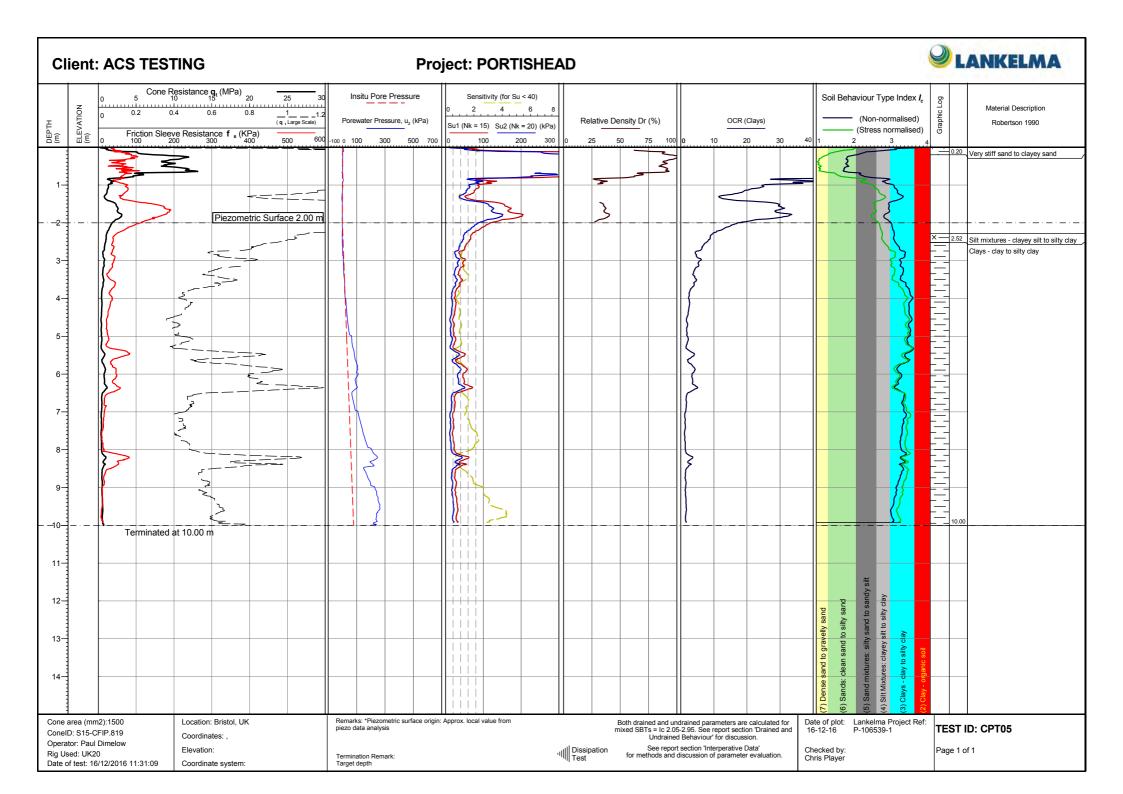


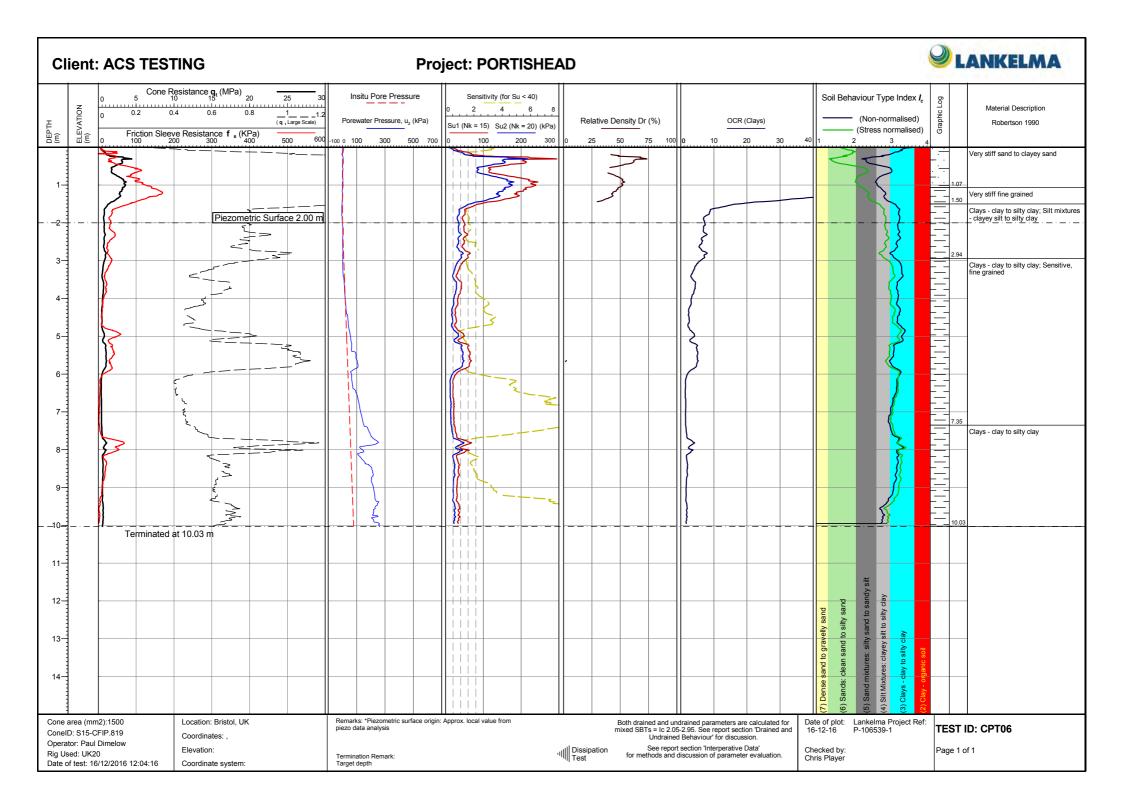



APPENDIX C STANDARD INTERPRETATION RESULTS


LIST OF FIGURES:


Test ID		Pages included
Cone Penetration Test	CPT01	1
Cone Penetration Test	CPT02	1
Cone Penetration Test	CPT03	1
Cone Penetration Test	CPT03A	1
Cone Penetration Test	CPT04	1
Cone Penetration Test	CPT05	1
Cone Penetration Test	CPT06	1





APPENDIX I

LABORATORY TEST CERTIFICATES

ACST - 16-79161 ACST - 16-79208 ACSE - 16-06089-01 ACSE - 16-06089-01 WAC

ACSE – 16-06100 - 01 ACSE – 16-06100-01 WAC CatWaste Soil Results

Laboratory reference no(s): 16-79161 - 310512 Head Office Certificate No: 310512-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH03
Location of sample on site : 1.30m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 12/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Grey moittled brown clayey sandy SILT

Total mass received : 1.05 kg

Method of preparation: BS 1377: Part 1 & Part 2: 1990

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 44 %

Remarks: NONE

Tested by: JASSAS Date tested: 20.12.2016 Approved: Date: 13/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and

Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310512 Head Office Certificate No: 310512-16-79161-S4

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH03
Location of sample on site : 1.30m

Borehole/pit no / depth N/A @ N/A n

Date sampled : 12/12/2016

Sampled by:

Date received : 19/12/2016

Material description : Grey moittled brown clayey sandy SILT

Total mass received : 1.05 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate : No - None Submitted

Client's indicated specification(s): n/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μm test sieve : **0** % Proportion of material passing 425 μm test sieve : **100** %

Plastic limit : 27 %
Liquid limit : 71 %
Plasticity index : 44 %
Liquidity index : 0.386

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 11.01.2017 Approved: Date: 13/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office Registered Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

.....

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Laboratory reference no(s): 16-79161 - 310513 Head Office Certificate No: 310513-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH03
Location of sample on site : 2.70m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 12/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received : 1.41 kg

Method of preparation : BS 1377 : Part 1 & Part 2 : 1990

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 32 %

Remarks: None

Tested by: JASSASSDC Date tested: 20.12.2016 Approved: Date: 03/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310513 Head Office Certificate No: 310513-16-79161-S4

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH03
Location of sample on site : 2.70m

Borehole/pit no / depth N/A @ N/A n

Date sampled : 12/12/2016

Sampled by:

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received : 1.41 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate : No - None Submitted

Client's indicated specification(s): n/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μm test sieve : 1 % Proportion of material passing 425 μm test sieve : 99 %

Plastic limit : 20 %
Liquid limit : 60 %
Plasticity index : 40 %
Liquidity index : 0.308

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 03.01.2017 Approved: Date: 05/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310515 Head Office Certificate No: 310515-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH04
Location of sample on site : 1.60m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 12/12/2016

Sampled by:

Date received : 19/12/2016

Material description : Grey mottled brown clayey SILT

Total mass received : 1.44 kg

Method of preparation: BS 1377: Part 1 & Part 2: 1990

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 23 %

Remarks: None

Tested by: JASSASSDC Date tested: 20.12.2016 Approved: Date: 03/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and

Wales No. 4639658

Registered Office

Unit 14

Laboratory reference no(s): 16-79161 - 310515 Head Office Certificate No: 310515-16-79161-S4

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH04
Location of sample on site : 1.60m

Borehole/pit no / depth N/A @ N/A n

Date sampled : 12/12/2016

Sampled by:

Date received : 19/12/2016

Material description : Grey mottled brown clayey SILT

Total mass received : 1.44 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate : No - None Submitted

Client's indicated specification(s): n/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μm test sieve : **0** % Proportion of material passing 425 μm test sieve : **100** %

Plastic limit : 19 %
Liquid limit : 55 %
Plasticity index : 36 %
Liquidity index : 0.111

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 03.01.2017 Approved: Date: 05/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

Opinions and interpretations, it stated, are not within the scope of our OKAS accreditation.

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858

Fax 01202 626046

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310518 Head Office Certificate No: 310518-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH04
Location of sample on site : 2.10m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 12/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received : 0.95 kg

Method of preparation : BS 1377 : Part 1 & Part 2 : 1990

N/A

Variation from test procedure : None

Location & orientation of test specimen

within original sample :

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 35 %

Remarks: None

Tested by: JASSASSDC Date tested: 20.12.2016 Approved: Date: 03/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310518 Head Office Certificate No: 310518-16-79161-S4

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH04
Location of sample on site : 2.10m

Borehole/pit no / depth N/A @ N/A m

Date sampled : 12/12/2016

Sampled by:

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received : 0.95 kg

Method of preparation: BS 1377: Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate : No - None Submitted

Client's indicated specification(s): n/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μm test sieve : **0** % Proportion of material passing 425 μm test sieve : **100** %

Plastic limit : 19 %
Liquid limit : 53 %
Plasticity index : 34 %
Liquidity index : 0.471

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 03.01.2017 Approved: Date: 05/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

Opinions and interpretations, it stated, are not within the scope of our OKAS accreditation.

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858

Fax 01202 626046

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310520 Head Office Certificate No: 310520-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH04
Location of sample on site : 2.60m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 12/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received : 1.61 kg

Method of preparation : BS 1377 : Part 1 & Part 2 : 1990

Variation from test procedure : None

Location & orientation of test specimen

within original sample :

No - None Submitted

N/A

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 31 %

Remarks: None

Sampling certificate:

Tested by: JASSASSDC Date tested: 20.12.2016 Approved: Date: 03/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Registered Office

Unit 14

Laboratory reference no(s): 16-79161 - 310520 Head Office Certificate No: 310520-16-79161-S4

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH04
Location of sample on site : 2.60m

Borehole/pit no / depth N/A @ N/A m

Date sampled : 12/12/2016

Sampled by:

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received : 1.61 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate : No - None Submitted

Client's indicated specification(s): n/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μm test sieve : **0** % Proportion of material passing 425 μm test sieve : **100** %

Plastic limit : 18 %
Liquid limit : 50 %
Plasticity index : 32 %
Liquidity index : 0.406

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 03.01.2017 Approved: Date:

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858

Fax 01202 626046

Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and

Wales No. 4639658

Registered Office

Quality Testing & Materials Consultancy to the Construction Industry

05/01/2017

Laboratory reference no(s): 16-79161 - 310523 Head Office Certificate No: 310523-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH05
Location of sample on site : 1.20m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 13/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Greyish brown clayey sandy SILT

Total mass received : 1.37 kg

Method of preparation : BS 1377 : Part 1 & Part 2 : 1990

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 21 %

Remarks: NONE

Tested by: DHJASSAS Date tested: 20.12.2016 Approved: Date: 13/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310523 Head Office Certificate No: 310523-16-79161-S4

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH05
Location of sample on site : 1.20m

Borehole/pit no / depth N/A @ N/A n

Date sampled : 13/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Greyish brown clayey sandy SILT

Total mass received: 1.37 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate: No - None Submitted

Client's indicated specification(s): N/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μ m test sieve : **0** % Proportion of material passing 425 μ m test sieve : **100** %

Plastic limit : 17 %
Liquid limit : 48 %
Plasticity index : 31 %
Liquidity index : 0.129

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 06.01.2017 Approved: Date: 10/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310524 Head Office Certificate No: 310524-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH05
Location of sample on site : 2.60m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 13/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Brownish grey silty CLAY

Total mass received : 1.83 kg

Method of preparation : BS 1377 : Part 1 & Part 2 : 1990

N/A

Variation from test procedure : None

Location & orientation of test specimen

within original sample :

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 27 %

Remarks: None

Tested by: JASSASSDC Date tested: 20.12.2016 Approved: Date: 03/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Registered Office

Laboratory reference no(s): 16-79161 - 310524 Head Office Certificate No: 310524-16-79161-S4

North Somerset Council Client :

Certificate address: Accounts Payable Team, 1B/15 Town Hall

> **Walliscote Grove Road** Weston-super-Mare

BS23 1UJ

Portishead & Pill Station Car Parks Contract:

Source of material (as indicated by client): in-situ TPPH05 Client reference/data: Location of sample on site: 2.60m

Borehole/pit no / depth N/A N/A

Date sampled: 13/12/2016

Sampled by: AD

Date received: 19/12/2016

Material description: **Brownish grey silty CLAY**

Total mass received: kg

Method of preparation: BS 1377: Part 1 & Part 2

Variation from test procedure: None

Location & orientation of test specimen

within original sample: N/A

No - None Submitted Sampling certificate:

Client's indicated specification(s): n/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 µm test sieve 0 % Proportion of material passing 425 µm test sieve 100

> Plastic limit 17 % Liquid limit 44 % Plasticity index 27 % Liquidity index 0.370

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: **DHJAS** Date tested : 09.01.2017 Approved: Date: 11/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention Any statement of compliance with a given specification relates only to the test covered by this certificate. Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page of

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858

Fax 01202 626046

Holton Heath Trading Park

Poole Dorset BH16 6LE **ACS Testing Limited** Registered in England and Wales No. 4639658

CERTIFICATE OF TEST - DETERMINATION OF MOISTURE CONTENT TESTED IN ACCORDANCE WITH B.S. 1377 : PART 2 : 1990 : CL 3.2.3.2

Laboratory reference no(s): 16-79161 - 310526 Head Office Certificate No: 310526-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH05
Location of sample on site : 3.10m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 13/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received : 1.41 kg

Method of preparation : BS 1377 : Part 1 & Part 2 : 1990

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 41 %

Remarks: None

Tested by: JASSASSDC Date tested: 20.12.2016 Approved: Date: 03/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

Registered Office

Unit 14

CERTIFICATE OF TEST - DETERMINATION OF LIQUID/PLASTIC LIMIT, PLASTICITY/LIQUIDITY INDEX TESTED IN ACCORDANCE WITH B.S. 1377 : PART 2 : 1990 : CLAUSE 4.3 & 5.0

Laboratory reference no(s): 16-79161 - 310526 Head Office Certificate No: 310526-16-79161-S4

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-Super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : In-Situ
Client reference/data : TPPH05
Location of sample on site : 3.10m

Borehole/pit no / depth N/A @ N/A m

Date sampled : 13/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Bluish grey silty CLAY

Total mass received: 1.41 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate : No - None Submitted

Client's indicated specification(s): N/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μ m test sieve : **0** % Proportion of material passing 425 μ m test sieve : **100** %

 Plastic limit
 : 20
 %

 Liquid limit
 : 59
 %

 Plasticity index
 : 39
 %

 Liquidity index
 : 0.538

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 06.01.2017 Approved: Date: 10/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Registered Office

CERTIFICATE OF TEST - DETERMINATION OF MOISTURE CONTENT TESTED IN ACCORDANCE WITH B.S. 1377 : PART 2 : 1990 : CL 3.2.3.2

Laboratory reference no(s): 16-79161 - 310530 Head Office Certificate No: 310530-16-79161-S2

Client : North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH06
Location of sample on site : 2.00m

Borehole/pit no / depth : N/A @ N/A m

Date sampled : 13/12/2016

Sampled by : AD

Date received : 19/12/2016

Material description : Grey mottled brown clayey SILT

Total mass received : 1.33 kg

Method of preparation: BS 1377: Part 1 & Part 2: 1990

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate: No - None Submitted

Client's indicated specification(s): n/a

The test specimen was oven dried at: 108 °C

Moisture content: 30 %

Remarks: None

Tested by: JASSASSDC Date tested: 20.12.2016 Approved: Date: 03/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Registered Office

CERTIFICATE OF TEST - DETERMINATION OF LIQUID/PLASTIC LIMIT, PLASTICITY/LIQUIDITY INDEX TESTED IN ACCORDANCE WITH B.S. 1377 : PART 2 : 1990 : CLAUSE 4.3 & 5.0

Laboratory reference no(s): 16-79161 - 310530 Head Office Certificate No: 310530-16-79161-S4

Client: North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road Weston-super-Mare

BS23 1UJ

Contract : Portishead & Pill Station Car Parks

Source of material (as indicated by client) : in-situ
Client reference/data : TPPH06
Location of sample on site : 2.00m

Borehole/pit no / depth N/A @ N/A n

Date sampled : 13/12/2016

Sampled by:

Date received : 19/12/2016

Material description : Grey mottled brown clayey SILT

Total mass received : 1.33 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None

Location & orientation of test specimen

within original sample : N/A

Sampling certificate : No - None Submitted

Client's indicated specification(s): n/a

Soil tested in natural condition (BS 1377:Part 2:1990 Clause 4.2.3)

Proportion of material retained on 425 μm test sieve : **0** % Proportion of material passing 425 μm test sieve : **100** %

Plastic limit : 20 %
Liquid limit : 51 %
Plasticity index : 31 %
Liquidity index : 0.323

Remarks: No compliance statement given as no client's indicated specification details submitted.

Tested by: DHJAS Date tested: 11.01.2017 Approved:

Registered Office

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate.

Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and
Wales No. 4639658

Quality Testing & Materials Consultancy to the Construction Industry

Date:

13/01/2017

CERTIFICATE OF TEST - DETERMINATION OF PARTICLE SIZE DISTRIBUTION BY WET SIEVE & SEDIMENTATION (HYDROMETER METHOD) TESTED IN ACCORDANCE WITH BS 1377: PART 2: 1990: CLAUSES 9.2 & 9.5

16-79208 - 310811 Head Office Certificate No: 310811-16-79208-S33B Laboratory reference no(s):

Client: North Somerset Council

Accounts Payable Team, 1B/15 Town Hall Certificate address:

Walliscote Grove Road, Weston-super-Mare,

Portishead & Pill Station Car Parks Contract:

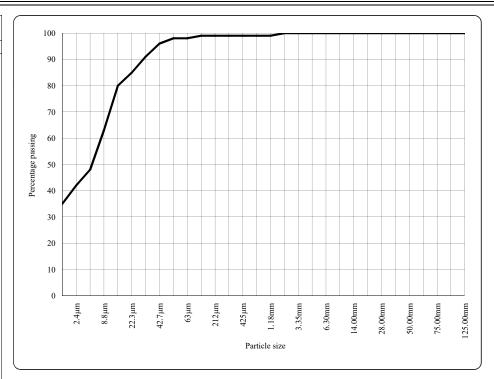
Source of material (as indicated by client): In Situ TPPH03 Client reference/data: Location of sample on site: 1.30m

Borehole/pit no / depth N/A N/A m 12/12/2016

Date sampled: Sampled by: AD Date received: 20/12/2016

Material description: Grey brown clay sand SILT Total mass received: 1.83 kg BS 1377 : Part 1 & Part 2 Method of preparation:

Variation from test procedure: None


Location & orientation of test specimen

within original sample: N/A

No - None submitted Sampling certificate:

Client's indicated specification(s): N/A

Particle	Percentage
Size	passing
	Actual
125.00mm	100
90.00mm	100
75.00mm	100
63.00mm	100
50.00mm	100
37.50mm	100
28.00mm	100
20.00mm	100
14.00mm	100
10.00mm	100
6.30mm	100
5.00mm	100
3.35mm	100
2.00mm	100
1.18mm	99
600µm	99
425μm	99
300µm	99
212µm	99
150µm	99
63μm	98
50.6µm	98
42.7µm	96
30.8µm	91
22.3μm	85
16.1µm	80
8.8µm	63
4.6µm	48
2.4µm	42
1.4µm	35
	l

Composition						
Particle size fraction (mm)	Cobbles	Gravel	Sand	Silt	Clay	
	200.0 - 60.0	60.0 - 2.00	2.00 - 0.06	0.06 - 0.002	0.002	
Particle Proportions	0	0	2	59	39	

Remarks: None

Tested by: DH/RC Date tested: **06.01.2017** Approved by: Date: 11/01/2017

> Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention Any statement of compliance with a given specification relates only to the test covered by this certificate. Opinions and interpretations, if stated, are not within the scope of our UKAS ac

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658 Unit 14

CERTIFICATE OF TEST - DETERMINATION OF PARTICLE SIZE DISTRIBUTION BY WET SIEVE & SEDIMENTATION (HYDROMETER METHOD) TESTED IN ACCORDANCE WITH BS 1377: PART 2: 1990: CLAUSES 9.2 & 9.5

Laboratory reference no(s): 16-79208 - 310812 Head Office Certificate No: 310812-16-79208-S33B

Client: North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare,

Contract: Portishead & Pill Station Car Parks

Source of material (as indicated by client): In Situ
Client reference/data: TPPH04
Location of sample on site: 1.60m

Borehole/pit no / depth N/A @ N/A m

Date sampled: 13/12/2016 Sampled by: AD

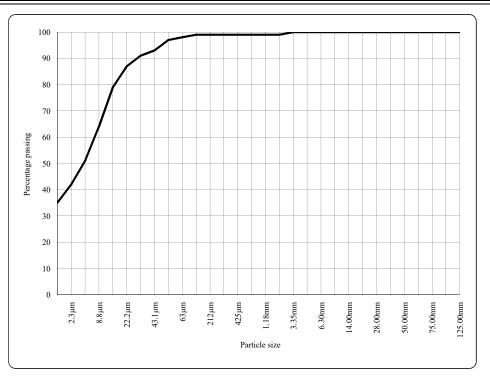
Date received : 20/12/2016

 Material description:
 Grey brown clay SILT

 Total mass received:
 9.23 kg

 Method of preparation:
 BS 1377: Part 1 & Part 2

Variation from test procedure : None


Location & orientation of test specimen

within original sample: N/A

Sampling certificate: No - None submitted

Client's indicated specification(s): N/A

Particle	Percentage
Size	passing
	Actual
125.00mm	100
90.00mm	100
75.00mm	100
63.00mm	100
50.00mm	100
37.50mm	100
28.00mm	100
20.00mm	100
14.00mm	100
10.00mm	100
6.30mm	100
5.00mm	100
3.35mm	100
2.00mm	99
1.18mm	99
600µm	99
425μm	99
300µm	99
212µm	99
150µm	99
63µm	98
50.6μm	97
43.1μm	93
30.8μm	91
22.2μm	87
16.1μm	79
8.8µm	64
4.6μm	51
2.3µm	42
1.4µm	35

Composition						
Particle size fraction (mm)	Cobbles	Gravel	Sand	Silt	Clay	
	200.0 - 60.0	60.0 - 2.00	2.00 - 0.06	0.06 - 0.002	0.002	
Particle Proportions	0	1	1	58	40	

Remarks: None

Tested by: DH/RC Date tested: 06.01.2017 Approved by: Date: 11/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate. Opinions and interpretations, if stated, are not within the scope of our UKAS accreditation.

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Registered Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

CERTIFICATE OF TEST - DETERMINATION OF PARTICLE SIZE DISTRIBUTION BY WET SIEVE & SEDIMENTATION (HYDROMETER METHOD) TESTED IN ACCORDANCE WITH BS 1377: PART 2: 1990: CLAUSES 9.2 & 9.5

Laboratory reference no(s): 16-79208 - 310813 Head Office Certificate No: 310813-16-79208-S33B

Client: North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare,

Contract: Portishead & Pill Station Car Parks

Source of material (as indicated by client): In Situ
Client reference/data: TPPH04
Location of sample on site: 2.60m

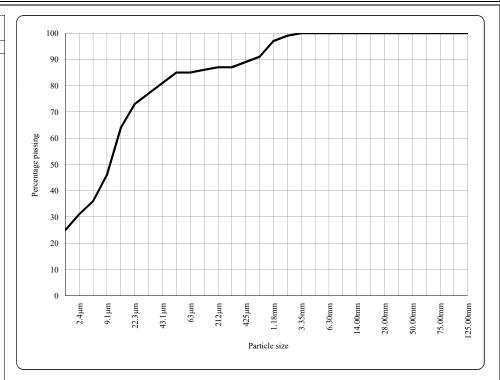
Borehole/pit no / depth N/A @ N/A m

Date sampled : 13/12/2016 Sampled by : AD

Date received: 20/12/2016

Meterial description: Plug gray silt C

Method of preparation : BS 1377 : Part 1 & Part 2


Variation from test procedure : None

Location & orientation of test specimen

within original sample: N/A
Sampling certificate: No - None submitted

Client's indicated specification(s): N/A

Particle	Percentage
Size	passing
	Actual
125.00mm	100
90.00mm	100
75.00mm	100
63.00mm	100
50.00mm	100
37.50mm	100
28.00mm	100
20.00mm	100
14.00mm	100
10.00mm	100
6.30mm	100
5.00mm	100
3.35mm	100
2.00mm	99
1.18mm	97
600µm	91
425µm	89
300µm	87
212µm	87
150µm	86
63µm	85
50.6μm	85
43.1µm	81
31.0µm	77
22.3µm	73
16.4µm	64
9.1µm	46
4.7µm	36
2.4µm	31
1.4µm	25

Composition						
Particle size fraction (mm)	Cobbles	Gravel	Sand	Silt	Clay	
	200.0 - 60.0	60.0 - 2.00	2.00 - 0.06	0.06 - 0.002	0.002	
Particle Proportions	0	1	14	56	29	

Remarks: None

Tested by: DH/RC Date tested: 06/01/2017 Approved by: Date: 11/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate. Opinions and interpretations, if stated, are not within the scope of our UKAS accre
This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046 Registered Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

CERTIFICATE OF TEST - DETERMINATION OF PARTICLE SIZE DISTRIBUTION BY WET SIEVE & SEDIMENTATION (HYDROMETER METHOD) TESTED IN ACCORDANCE WITH BS 1377: PART 2: 1990: CLAUSES 9.2 & 9.5

16-79208 - 310814 Head Office Certificate No: 310814-16-79208-S33B Laboratory reference no(s):

Client: North Somerset Council

Accounts Payable Team, 1B/15 Town Hall Certificate address:

Walliscote Grove Road, Weston-super-Mare,

Portishead & Pill Station Car Parks Contract:

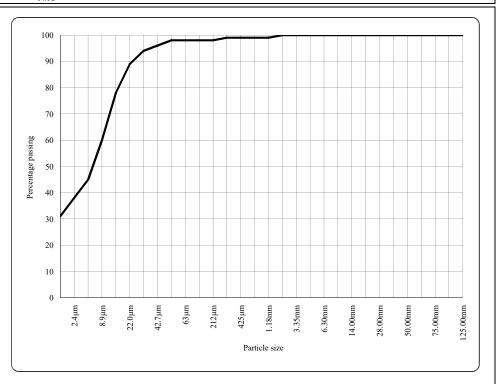
Source of material (as indicated by client): In Situ TPPH05 Client reference/data: Location of sample on site : 2.60m

Borehole/pit no / depth N/A N/A m

12/12/2016 Date sampled: Sampled by: AD

Date received: 20/12/2016 Material description:

Brown grey silt CLAY Total mass received: 7.64 kg BS 1377 : Part 1 & Part 2 Method of preparation:


Variation from test procedure: None

Location & orientation of test specimen

within original sample: N/A No - None submitted Sampling certificate:

Client's indicated specification(s): N/A

Particle	Percentage
Size	passing
	Actual
125.00mm	100
90.00mm	100
75.00mm	100
63.00mm	100
50.00mm	100
37.50mm	100
28.00mm	100
20.00mm	100
14.00mm	100
10.00mm	100
6.30mm	100
5.00mm	100
3.35mm	100
2.00mm	100
1.18mm	99
600µm	99
425µm	99
300µm	99
212µm	98
150µm	98
63µm	98
50.6µm	98
42.7µm	96
30.5µm	94
22.0µm	89
16.2µm	78
8.9µm	60
4.7µm	45
2.4µm	38
1.4µm	31

Composition						
Particle size fraction (mm)	Cobbles	Gravel	Sand	Silt	Clay	
	200.0 - 60.0	60.0 - 2.00	2.00 - 0.06	0.06 - 0.002	0.002	
Particle Proportions	0	0	2	63	35	

Remarks: None

> DH/RC Date tested: 11.01.2017 Approved by:

> > Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention

Any statement of compliance with a given specification relates only to the test covered by this certificate. Opinions and interpretations, if stated, are not within the scope of our UKAS ac

This report shall not be reproduced, except in full, without prior written approval of the laboratory Page 1 of 1

Registered Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658 Unit 14

Quality Testing & Materials Consultancy to the Construction Industry

Date:

11/01/2017

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Tested by:

Tel 01202 622858 Fax 01202 626046

CERTIFICATE OF TEST - DETERMINATION OF PARTICLE SIZE DISTRIBUTION BY WET SIEVE & SEDIMENTATION (HYDROMETER METHOD) TESTED IN ACCORDANCE WITH BS 1377: PART 2: 1990: CLAUSES 9.2 & 9.5

Laboratory reference no(s): 16-79208 - 310815 Head Office Certificate No: 310815-16-79208-S33B

Client: North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare,

Contract: Portishead & Pill Station Car Parks

Source of material (as indicated by client): In Situ
Client reference/data: TPPH06
Location of sample on site: 0.90m

Borehole/pit no / depth N/A @ N/A m

Date sampled : 13/12/2016 Sampled by : AD

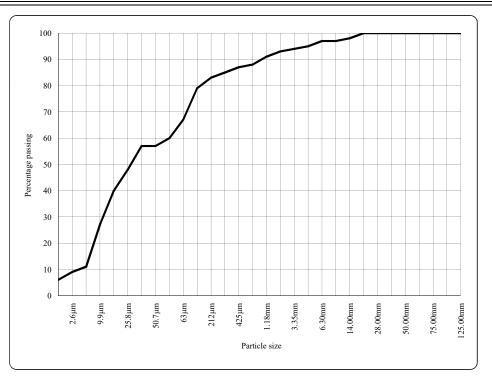
Date received : 20/12/2016

Material description : MADE GROUND. Grey brown sand SILT

Total mass received: 15.58 kg

Method of preparation : BS 1377 : Part 1 & Part 2

Variation from test procedure : None


Location & orientation of test specimen

within original sample: N/A

Sampling certificate: Yes - See enclosed

Client's indicated specification(s): N/A

Particle	Percentage
Size	passing
	Actual
125.00mm	100
90.00mm	100
75.00mm	100
63.00mm	100
50.00mm	100
37.50mm	100
28.00mm	100
20.00mm	100
14.00mm	98
10.00mm	97
6.30mm	97
5.00mm	95
3.35mm	94
2.00mm	93
1.18mm	91
600µm	88
425µm	87
300μm	85
212µm	83
150µm	79
63μm	67
60.2μm	60
50.7μm	57
35.9µm	57
25.8µm	48
18.6μm	40
9.9µm	27
5.1µm	11
2.6µm	9
1.5µm	6

Composition						
Particle size fraction (mm)	Cobbles	Gravel	Sand	Silt	Clay	
	200.0 - 60.0	60.0 - 2.00	2.00 - 0.06	0.06 - 0.002	0.002	
Particle Proportions	0	7	26	60	7	

Remarks: None

_

Tested by: DH/RC Date tested: 06.01.2017 Approved by: Date: 11/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention Any statement of compliance with a given specification relates only to the test covered by this certificate. Opinions and interpretations, if stated, are not within the scope of our UKAS acco

This report shall not be reproduced, except in full, without prior written approval of the laboratory $Page\ 1\ of\ 1$

Registered Office

Unit 14
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Testing Limited
Registered in England and Wales No.
4639658

Quality Testing & Materials Consultancy to the Construction Industry

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046

CERTIFICATE OF TEST - DETERMINATION OF PARTICLE SIZE DISTRIBUTION BY WET SIEVE & SEDIMENTATION (HYDROMETER METHOD) TESTED IN ACCORDANCE WITH BS 1377: PART 2: 1990: CLAUSES 9.2 & 9.5

Laboratory reference no(s): 16-79208 - 310816 Head Office Certificate No: 310816-16-79208-S33B

Client: North Somerset Council

Certificate address : Accounts Payable Team, 1B/15 Town Hall

Walliscote Grove Road, Weston-super-Mare,

Contract: Portishead & Pill Station Car Parks

Source of material (as indicated by client): In Situ
Client reference/data: TPPH06
Location of sample on site: 2.00m

Borehole/pit no / depth N/A @ N/A m

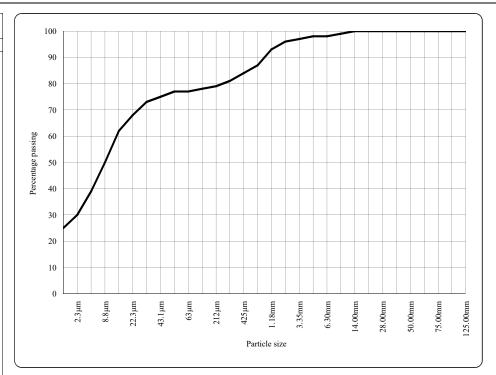
Date sampled : 13/12/2016 Sampled by : AD

Date received : 20/12/2016

 Material description:
 Grey brown clay SILT

 Total mass received:
 6.75 kg

 Method of preparation:
 BS 1377: Part 1 & Part 2


Variation from test procedure : None

Location & orientation of test specimen

within original sample: N/A

Sampling certificate: No - None submitted Client's indicated specification(s): N/A

Particle	Percentage
Size	passing
	Actual
125.00mm	100
90.00mm	100
75.00mm	100
63.00mm	100
50.00mm	100
37.50mm	100
28.00mm	100
20.00mm	100
14.00mm	100
10.00mm	99
6.30mm	98
5.00mm	98
3.35mm	97
2.00mm	96
1.18mm	93
600µm	87
425µm	84
300µm	81
212µm	79
150µm	78
63µm	77
51.1µm	77
43.1µm	75
30.8µm	73
22.3µm	68
16.2µm	62
8.8µm	50
4.6µm	39
2.3µm	30
- 1	

Composition						
Particle size fraction (mm)	Cobbles	Gravel	Sand	Silt	Clay	
	200.0 - 60.0	60.0 - 2.00	2.00 - 0.06	0.06 - 0.002	0.002	
Particle Proportions	0	4	19	49	28	

Remarks: None

1.4µm

_

Tested by: DH/RC Date tested: 11.01.2017 Approved by: Date: 11/01/2017

Bulk samples will be retained for a minimum of 21 days from date of receipt unless a written instruction is received within 14 days of receipt requesting sample retention Any statement of compliance with a given specification relates only to the test covered by this certificate. Opinions and interpretations, if stated, are not within the scope of our UKAS as

This report shall not be reproduced, except in full, without prior written approval of the laboratory

Page 1 of 1

Head Office

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Tel 01202 622858 Fax 01202 626046

25

Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Testing Limited Registered in England and Wales No. 4639658

ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset **BH16 6LE**

Certificate of Analysis

Certificate Number: 16-06089-Issue 1-Page: 1

GEO RESULTS Report Fao:

Site Address: Portishead & Pill Station Car Parks

Client Order No: 16-79161

Date of Sampling: 12/12/2016

Date Received: 19/12/2016

13/01/2017 **Report Date:**

Please find your certificates of test attached for your samples received in the laboratory on 19/12/2016 under our laboratory reference 16-06089.

Remarks:

None

Results reviewed by:

David Redfern Technical Supervisor

Test Certificates approved by:

Mark Rowley Laboratory Manager

Any opinions or interpretations indicated are outside the scope of our UKAS accreditation. This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis. Excel copies of reports are valid only when accompanied by this PDF certificate. Client's Sample Description / ACS Material Description are noted for reference only.

Head Office Registered Office

Unit 14B Unit 14B

Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628642

Wales No. 6000065

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number Sample ID 26572 26573 26574 310510 - 16-79161 310511 - 16-79161 310514 - 16-79161 2

Date Sampled 12/12/2016 12/12/2016 12/12/2016 Time Sampled

Sample deviating codes g
Client's Sample Description

ACS Testing Material Description Dark grey gravelly S Grey sandy GRAVEL Bluish grey silty CL
AND AY
Principal Matrix (as received) GRAVEL GRAVEL CLAY

Determination Units Method Result Result Result AS AS AS **Anions** Water Soluble Chloride mg/l MT/ACSE/204 AD 18.9 < 3.00 *g *g Water Soluble Nitrate mg/l MT/ACSE/204 ΑD < 0.01 0.82 *g *g Water Soluble Sulphate mg/l MT/ACSE/204 AD 3.99 *g 11.6 *g BS 1377 % BS 1377 Organic Matter AR 3.17 -----Metals (Soil) MT/ACSE/201 AD mg/kg Magnesium 2760 9190 MT/ACSE/201 TS Total Sulphur ΑD 0.082 0.015 pH and Conductivity MT/ACSE/301 units ΑD pH (2.5:1) (@ 20°C) 6.5 8.3 *g **Sulphates** %SO4 Acid Soluble Sulphate NAM/ACSE/X34 AD < 0.01 < 0.01

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Poole
Dorset BH16 6LE
Tel 01202 628680
Fax 01202 628680
Poole
Dorset BH16 6LE
ACS Environmental
Registered in Englar
Wales No. 6000065

Registered Office
Unit 14B
Blackhill Road West
Holton Heath Trading Park
Poole
Dorset BH16 6LE
ACS Environmental Testing Limited
Registered in England and

Quality Testing & Materials Consultancy to the Construction Industry

Page: 2 of 7

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number 26575 Sample ID 310516 - 16-79161 310517 - 16-79161 310519 - 16-79161

Clients Sample Ref. TPPH04 TPPH04 TPPH04

Location / Sample Depth (m) 1.60m 1.60m 2.10m 12/12/2016 12/12/2016 12/12/2016 **Date Sampled**

Time Sampled Sample deviating codes Client's Sample Description

Grey mottled brown c **ACS Testing Material Description** Grey mottled brown c Bluish grey silty CL

layey SILT CLAY layey SILT AY CLAY Principal Matrix (as received)

	•	•	,						
Determination	Units	Method		Result	AS	Result	AS	Result	AS
Anions									
Water Soluble Chloride	mg/l	MT/ACSE/204	AD	10.8	*g			8.06	*g
Water Soluble Nitrate	mg/l	MT/ACSE/204	AD	0.90	*g			0.22	*g
Water Soluble Sulphate	mg/l	MT/ACSE/204	AD	8.16	*g			471	*g
BS 1377									
Organic Matter	%	BS 1377	AR			0.40			
Metals (Soil)									
Magnesium	mg/kg	MT/ACSE/201	AD	8530				9540	
TS Total Sulphur	%	MT/ACSE/201	AD	0.017				0.831	
pH and Conductivity									
pH (2.5:1) (@ 20 ℃)	units	MT/ACSE/301	AD	8.1	*g			7.6	*g
Sulphates									
Acid Soluble Sulphate	%SO4	NAM/ACSE/X34	AD	< 0.01				< 0.01	

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680

Registered Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the **Construction Industry**

Page: 3 of 7

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number 26578

Sample ID 310521 - 16-79161 310522 - 16-79161

310525 - 16-79161

Clients Sample Ref.

TPPH04

TPPH05

Location / Sample Depth (m)

TPPH05 1.00m

2.60m

Date Sampled

2.60m 12/12/2016

13/12/2016

13/12/2016

Time Sampled Sample deviating codes Client's Sample Description

ACS Testing Material Description

Bluish grey silty CL

Greyish brown clayey

Brownish grey silty

Principal Matrix (as received)

AY CLAY

sandy SILT CLAY

CLAY

Determination	Units	Method		Result	AS	Result	AS	Result	AS
Anions									
Water Soluble Chloride	mg/l	MT/ACSE/204	AD			7.12	*g		
Water Soluble Nitrate	mg/l	MT/ACSE/204	AD			0.27	*g		
Water Soluble Sulphate	mg/l	MT/ACSE/204	AD			14.9	*g		
BS 1377									
Organic Matter	%	BS 1377	AR	1.04				1.98	
Metals (Soil)									
Magnesium	mg/kg	MT/ACSE/201	AD			7530			
TS Total Sulphur	%	MT/ACSE/201	AD			0.018			
pH and Conductivity									
pH (2.5:1) (@ 20℃)	units	MT/ACSE/301	AD			7.9	*g		
Sulphates									
Acid Soluble Sulphate	%SO4	NAM/ACSE/X34	AD			< 0.01			

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680

Registered Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Environmental Testing Limited Registered in England and

Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 4 of 7

16-06089-Issue 1-Page: 5 Certificate No.

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number 26581 Sample ID 310527 - 16-79161 310528 - 16-79161 310529 - 16-79161

Clients Sample Ref. TPPH06 TPPH06 TPPH06

Location / Sample Depth (m) 0.40m 0.90m 2.00m

13/12/2016 13/12/2016 13/12/2016 **Date Sampled Time Sampled** Sample deviating codes

Client's Sample Description

Grey mottled brown c Grey mottled brown c **ACS Testing Material Description** Grey mottled brown c

layey sandy SILT layey sandy SILT layey SILT CLAY Principal Matrix (as received)

Determination Units Method Result Result AS Result AS AS **Anions** Water Soluble Chloride mg/l MT/ACSE/204 ΑD 12.0 *g 109 *g Water Soluble Nitrate mg/l MT/ACSE/204 ΑD 0.24 *g 0.36 *g ΑD MT/ACSE/204 Water Soluble Sulphate mg/l 53.9 *g 225 *g BS 1377 Organic Matter % BS 1377 AR 1.60 Metals (Soil) Magnesium mg/kg MT/ACSE/201 AD 3240 9170 % MT/ACSE/201 AD 0.032 TS Total Sulphur 0.032 pH and Conductivity pH (2.5:1) (@ 20°C) units MT/ACSE/301 AD 7.8 *g 8.7 *g **Sulphates** Acid Soluble Sulphate %SQ4 NAM/ACSE/X34 AD < 0.01 < 0.01

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE Tel 01202 628680

Fax 01202 628680

Registered Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 5 of 7

16-06089-Issue 1-Page: 6 Certificate No.

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number

26584 Sample ID 310531 - 16-79161

Clients Sample Ref. TPPH06

Location / Sample Depth (m) 2.00m

Date Sampled Time Sampled Sample deviating codes 13/12/2016

Client's Sample Description ACS Testing Material Description

Grey mottled brown c

layey SILT CLAY

Principal Matrix (as received)

NAM/ACSE/X34

AD

Determination Units Method Result AS **Anions** Water Soluble Chloride mg/l MT/ACSE/204 Water Soluble Nitrate mg/l MT/ACSE/204 ΑD Water Soluble Sulphate MT/ACSE/204 mg/l AD BS 1377 Organic Matter % BS 1377 AR 0.92 Metals (Soil) Magnesium mg/kg MT/ACSE/201 ΑD TS Total Sulphur % MT/ACSE/201 AD pH and Conductivity pH (2.5:1) (@ 20°C) units MT/ACSE/301 AD

%SQ4

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Sulphates

Acid Soluble Sulphate

Tel 01202 628680 Fax 01202 628680

Registered Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE ACS Environmental Testing Limited Registered in England and

Wales No. 6000065

Quality Testing & Materials Consultancy to the **Construction Industry**

Page: 6 of 7

Site Address Portishead & Pill Station Car Parks

Technical Information for Analytical Results

Analysis

* - denotes analysis covered by our UKAS accreditation

- denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition

AR = Sample tested in as-received condition.

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

Where results are less than the limit of detection, the value of 0 is used in calculations.

Deviating Codes

Deviating Samples

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample taken.

- a The date and/or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable holding time(s). It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- b No sampling time given (waters only) unable to confirm if samples are within acceptable holding times.
- c This Test Item was received in an inappropriate container; it is possible that sample and/or analyte integrity has not been maintained and that the results are non-representative of the original sample taken.
- d On receipt, the temperature of the sample received was found to fall outside the recommendations of EN ISO 18512:2007 Soils & Granular Wastes.
- e The sample was received in a container that had been filled incorrectly which may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- f The delay between Sampling and Sample Receipt is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- g The delay between Sampling and Analysis is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.

The following Additional Deviating Sample Codes may also be used

- I/S Insufficient sample mass/volume received for accurate quantification of this analyte.
- U/S The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available.

Deviating Methods

- Z A minor deviation from the Test Method was necessary but this is deemed to have had no impact on the Test Result, the legitimacy of the method validation or the Accreditation Status of the Test Method.
- Y A significant deviation from the Test Method was necessary which is deemed to have had no impact on the Test Result, however, due to a lack of sufficient supporting validation, the Accreditation Status of the Method has been removed.
- W The normal LOD of the instrument/method could not be attained, thus an elevated LOD or LOQ has been applied to the Test Data, however, the data reported meets the requirements of the Client and does not affect compliance with the specification limit (where applicable).
- V One of the QA/QC parameters failed, however, the increased implied Uncertainty associated with the Test Result meets the requirements of the Client and does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.2.9).
- U The precision acceptance criteria associated with the Test Method could not be met but the Test Result fulfils the Client's objectives and the elevated Uncertainty does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.8.10).
- T The Test Method used was supplied by the Client and involved a simple modification of a Test Method for which ACSE holds accreditation (Quality Manual, Section 18.3.8).

Head Office
Unit 14B
Blackhill Road West
Holton Heath Trading Park

Poole
Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065 Quality Testing & Materials Consultancy to the Construction Industry

Page: 7 of 7

ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Certificate of Analysis

Certificate Number: 16-06100-Issue 1-Page: 1

Report Fao: GEO RESULTS

Site Address: Portishead & Pill Station Car Parks

Client Order No: 16-79208

Date of Sampling: 12/12/2016

Date Received: 20/12/2016

Report Date: 18/01/2017

Please find your certificates of test attached for your samples received in the laboratory on 20/12/2016 under our laboratory reference 16-06100.

Remarks:

None

Results reviewed by:

David Redfern Technical Supervisor

Test Certificates approved by:

Mark Rowley Laboratory Manager

Any opinions or interpretations indicated are outside the scope of our UKAS accreditation.

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Excel copies of reports are valid only when accompanied by this PDF certificate.

Client's Sample Description / ACS Material Description are noted for reference only.

Head Office Registered Office

Unit 14B Unit 14B

Blackhill Road West
Holton Heath Trading Park
Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

Tel 01202 628680 ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Site Address Portishead & Pill Station Car Parks

1.10m

ACSE Sample Number 26610 Sample ID 310806 - 16-79208 310807 - 16-79208 310808 - 16-79208

0.40m

MADE GROUND. Grey SA MADE GROUND. Grey SA MADE GROUND. Grey SA

Clients Sample Ref. TPPH03 TPPH04 TPPH04

Location / Sample Depth (m) 12/12/2016 13/12/2016 13/12/2016 **Date Sampled**

Time Sampled Sample deviating codes Client's Sample Description

0.30m

ACS Testing Material Description

ND ND SAND SAND SAND Principal Matrix (as received)

		paa (a.o .oo.	,	07.1.12		0,2		0,2	
Determination	Units	Method		Result	AS	Result	AS	Result	AS
Anions									
Sulphate	mg/l	MT/ACSE/204	L	< 3.00	*	43.7	*		
Water Soluble Sulphate	mg/l	MT/ACSE/204	AD	4.61	*g	23.0	*g	28.6	*g
BTEX									
Benzene	mg/kg	MT/ACSE/101	AR	0.17	*fg				
Ethylbenzene	mg/kg	MT/ACSE/101	AR	< 0.10	*fg				
m+p-xylene	mg/kg	MT/ACSE/101	AR	< 0.19	*fg				
o-xylene	mg/kg	MT/ACSE/101	AR	< 0.10	*fg				
Toluene	mg/kg	MT/ACSE/101	AR	< 0.10	*fg				
Total BTEX	mg/kg	MT/ACSE/101	AR	< 0.50	*fg				
Carbon									
TOC (Total Organic Carbon)	%	MT/ACSE/102	AR	30.2	*				
FOC	%	MT/ACSE/102	AR	0.305		0.293		0.230	
Loss on Ignition									
Loss on Ignition (440 ℃)	%	MT/ACSE/302	AD	5.0	*g				
Metals (Leachate)					, i				
Arsenic	mg/l	MT/ACSE/205	L	< 0.003	*g	< 0.003	*g		
Boron	mg/l	MT/ACSE/205	L	0.056	3	0.075	3		
Cadmium	mg/l	MT/ACSE/205	L	< 0.0003	*g	< 0.0003	*g		
Chromium	mg/l	MT/ACSE/205	L	< 0.001	*g	0.001	*g		
Copper	mg/l	MT/ACSE/205	L	0.008	*g	0.017	*g		
Mercury	mg/l	MT/ACSE/202	L	0.0002	*g	< 0.0001	*		
Nickel	mg/l	MT/ACSE/205	L	0.0011	*g	0.0060	*g		
Lead	mg/l	MT/ACSE/205	L	0.005	*g	< 0.004	*g		
Zinc	mg/l	MT/ACSE/205	L	0.014	*g	0.033	*g		
Metals (Soil)									
Arsenic	mg/kg	MT/ACSE/201	AD	59.8	*#	54.0	*#	70.1	*#
Cadmium	mg/kg	MT/ACSE/201	AD	4.52	*#	5.46	*#	4.52	*#
Chromium	mg/kg	MT/ACSE/201	AD	34.2	*#	46.7	*#	32.9	*#
Copper	mg/kg	MT/ACSE/201	AD	146	*#	408	*#	302	*#
Mercury	mg/kg	MT/ACSE/202	AD	0.26	*#g	0.31	*#g	2.27	*#g
Nickel	mg/kg	MT/ACSE/201	AD	73.3	*#	85.0	*#	66.2	*#
Lead	mg/kg	MT/ACSE/201	AD	326	*#	183	*#	1970	*#
Zinc	mg/kg	MT/ACSE/201	AD	530	*#	532	*#	1460	*#
Boron (Hot Water Soluble)	mg/kg	NAM/ACSE/X08	AD	0.14		1.62		0.51	
Organic Matter									
Soil Organic Matter	%	NAM/ACSE/X29	AD	1.4		2.5		2.6	
Petroleum Hydrocarbons									
Total TPH (C10-C40)	mg/kg	MT/ACSE/105	AR	114	*#fg	114	*#g	72.4	*#g
pH and Conductivity									
pH (@ 20 ℃)	units	MT/ACSE/301	L	7.9	*	7.7	*		
pH (@ 20 ℃)	units	MT/ACSE/301	AD	6.9	*fg	6.5	*g	6.6	*g
Phenols									
Total Phenol (Sum of 4 specific phenols)	mg/kg	MT/ACSE/107	AD	< 0.05		< 0.05		< 0.05	

Head Office Registered Office

Unit 14B Unit 14B Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the **Construction Industry**

Page: 2 of 6

Site Address Portishead & Pill Station Car Parks

13/12/2016

ACSE Sample Number 26610 Sample ID 310806 - 16-79208 310807 - 16-79208 310808 - 16-79208

13/12/2016

MADE GROUND. Grey SA MADE GROUND. Grey SA MADE GROUND. Grey SA

Clients Sample Ref. TPPH03 TPPH04 TPPH04

Location / Sample Depth (m) 0.30m 0.40m 1.10m

Date Sampled Time Sampled Sample deviating codes

12/12/2016

Client's Sample Description

ND ND SAND SAND SAND Principal Matrix (as received)

Determination	Units	Method		Result	AS	Result	AS	Result	AS
Poly Aromatic Hydrocarbons									
Naphthalene	mg/kg	MT/ACSE/106	AD	0.76	*#g	0.64	*#g	1.03	*#g
Acenaphthylene	mg/kg	MT/ACSE/106	AD	1.06	*#g	0.53	*#g	0.49	*#g
Acenaphthene	mg/kg	MT/ACSE/106	AD	0.16	*#g	0.12	*#g	0.25	*#g
Fluorene	mg/kg	MT/ACSE/106	AD	0.43	*#g	0.29	*#g	0.51	*#g
Phenanthrene	mg/kg	MT/ACSE/106	AD	1.94	*#g	1.85	*#g	2.53	*#g
Anthracene	mg/kg	MT/ACSE/106	AD	4.10	*#g	2.44	*#g	2.44	*#g
Fluoranthene	mg/kg	MT/ACSE/106	AD	5.71	*#g	3.17	*#g	4.01	*#g
Pyrene	mg/kg	MT/ACSE/106	AD	5.86	*#g	3.12	*#g	3.73	*#g
Benzo (a) anthracene	mg/kg	MT/ACSE/106	AD	1.74	*#g	1.34	*#g	1.70	*#g
Chrysene	mg/kg	MT/ACSE/106	AD	2.44	*#g	2.17	*#g	2.62	*#g
Benzo (b) fluoranthene	mg/kg	MT/ACSE/106	AD	2.99	*#g	2.85	*#g	3.36	*#g
Benzo (k) fluoranthene	mg/kg	MT/ACSE/106	AD	1.00	*#g	0.94	*#g	0.95	*#g
Benzo (a) pyrene	mg/kg	MT/ACSE/106	AD	1.55	*#g	1.07	*#g	1.85	*#g
Indeno (1 2 3-CD) pyrene	mg/kg	MT/ACSE/106	AD	1.08	*#g	1.09	*#g	1.39	*#g
Dibenzo(a h)anthracene	mg/kg	MT/ACSE/106	AD	0.46	*#g	0.42	*#g	0.47	*#g
Benzo(g h i)perylene	mg/kg	MT/ACSE/106	AD	1.25	*#g	1.36	*#g	1.49	*#g
Total PAH	mg/kg	MT/ACSE/106	AD	32.5	*#g	23.4	*#g	28.8	*#g
Polychlorinated Biphenyls (PCBs)									
PCB (7 Congeners)	mg/kg	MT/ACSE/104	AD	< 1.00					
Subcontracted Analysis									
Total Cyanide	mg/kg	SC	SC	Attached		Attached		Attached	
Asbestos Fibre ID	SC	SC	SC	Attached		Attached		Attached	l
Total Cyanide	mg/l	SC	L	Attached		Attached			
Waters and Leachates									
Ammoniacal Nitrogen	mg/l	MT/ACSE/203	L	0.04	*	0.03	*		

ACS Testing Material Description

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE Tel 01202 628680 Fax 01202 628680

Registered Office Unit 14B Blackhill Road West Holton Heath Trading Park

Poole Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the **Construction Industry**

Page: 3 of 6

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number Sample ID

26613 310809 - 16-79208

310810 - 16-79208

Clients Sample Ref.

TPPH05

TPPH06

Location / Sample Depth (m)

0.30m

0.90m

Date Sampled Time Sampled 12/12/2016

12/12/2016

Sample deviating codes **Client's Sample Description**

fg

ACS Testing Material Description

TOPSOIL. Grey brown SILT

MADE GROUND. Grey br own sand SILT SILT

Principal Matrix (as received)

LOAM

Units Method Result Determination AS Result AS **Anions** Sulphate mg/l MT/ACSE/204 L 14.2 Water Soluble Sulphate mg/l MT/ACSE/204 ΑD 15.1 *g 118 *g **BTEX** mg/kg MT/ACSE/101 AR 0.23 Benzene *fg Ethylbenzene mg/kg MT/ACSE/101 AR < 0.10 *fg MT/ACSE/101 AR ma/ka *fg m+p-xylene < 0.19mg/kg MT/ACSE/101 AR *fg < 0.10 o-xvlene Toluene mg/kg MT/ACSE/101 AR < 0.10 *fg MT/ACSE/101 Total BTEX mg/kg AR < 0.50 *fg Carbon TOC (Total Organic Carbon) % MT/ACSF/102 AR 3.17 0.0511 MT/ACSF/102 AR FOC % 0.0320 Loss on Ignition Loss on Ignition (440 ℃) % MT/ACSE/302 ΑD 2.0 *g Metals (Leachate) Arsenic mg/l MT/ACSF/205 L 0.007 *g MT/ACSE/205 Boron mg/l L 0.142 MT/ACSE/205 L mg/l < 0.0003 Cadmium *g MT/ACSE/205 Chromium mg/l 0.002 *g MT/ACSE/205 0.005 Copper mg/l *g MT/ACSE/202 Mercury mg/l 0.0002 *g MT/ACSE/205 Nickel mg/l < 0.0003 *g MT/ACSE/205 Lead mg/l < 0.004 *g MT/ACSE/205 0.007 Zinc mg/l *g Metals (Soil) mg/kg MT/ACSE/201 AD *# 52.4 *# Arsenic 51.3 *# Cadmium mg/kg MT/ACSE/201 AD 2.07 0.69 *# mg/kg MT/ACSE/201 AD *# 25.9 *# Chromium 53.6 mg/kg MT/ACSE/201 AD 38.7 *# 30.6 *# Copper MT/ACSE/202 AD *#g 0.29 Mercury mg/kg 0.17 *g Nickel mg/kg MT/ACSE/201 AD 37.5 *# 34.8 *# MT/ACSE/201 *# AD *# Lead mg/kg 132 18.3 mg/kg MT/ACSE/201 AD *# Zinc 236 52.1 NAM/ACSE/X08 Boron (Hot Water Soluble) mg/kg AD 0.46 0.54 **Organic Matter** Soil Organic Matter % NAM/ACSE/X29 AD 3.0 1.7 **Petroleum Hydrocarbons** Total TPH (C10-C40) mg/kg MT/ACSE/105 AR < 50.0 *#fg < 50.0 *#fg pH and Conductivity MT/ACSE/301 units pH (@ 20 °C) 7.8 L pH (@ 20 °C) units MT/ACSE/301 6.6 *fg 6.9 *fg

Head Office Registered Office Unit 14B Unit 14B

Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 4 of 6

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number

Sample ID

26613 310809 - 16-79208

310810 - 16-79208

Clients Sample Ref.

TPPH05

TPPH06

Location / Sample Depth (m)

0.30m

0.90m

Date Sampled

12/12/2016

12/12/2016

fg

Time Sampled Sample deviating codes Client's Sample Description

Principal Matrix (as received)

ACS Testing Material Description

TOPSOIL. Grey brown SILT

MADE GROUND. Grey br own sand SILT

Determination	Units	Method		Result	AS	Result	AS
Phenois							
Total Phenol (Sum of 4 specific phenols)	mg/kg	MT/ACSE/107	AD	< 0.05		< 0.05	
Poly Aromatic Hydrocarbons							
Naphthalene	mg/kg	MT/ACSE/106	AD	0.19	*#g	0.24	*#g
Acenaphthylene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Acenaphthene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Fluorene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Phenanthrene	mg/kg	MT/ACSE/106	AD	0.28	*#g	0.14	*#g
Anthracene	mg/kg	MT/ACSE/106	AD	0.15	*#g	< 0.10	*#g
Fluoranthene	mg/kg	MT/ACSE/106	AD	0.20	*#g	< 0.10	*#g
Pyrene	mg/kg	MT/ACSE/106	AD	0.16	*#g	< 0.10	*#g
Benzo (a) anthracene	mg/kg	MT/ACSE/106	AD	0.10	*#g	< 0.10	*#g
Chrysene	mg/kg	MT/ACSE/106	AD	0.13	*#g	< 0.10	*#g
Benzo (b) fluoranthene	mg/kg	MT/ACSE/106	AD	0.17	*#g	< 0.10	*#g
Benzo (k) fluoranthene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Benzo (a) pyrene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Indeno (1 2 3-CD) pyrene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Dibenzo(a h)anthracene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Benzo(g h i)perylene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Total PAH	mg/kg	MT/ACSE/106	AD	< 2.00	*#g	< 2.00	*#g
Polychlorinated Biphenyls (PCBs)							
PCB (7 Congeners)	mg/kg	MT/ACSE/104	AD			< 1.00	
Subcontracted Analysis							
Total Cyanide	mg/kg	SC	sc	Attached		Attached	
Asbestos Fibre ID	SC	SC	SC	Attached		Attached	
Total Cyanide	mg/l	SC	L			Attached	
Waters and Leachates							
Ammoniacal Nitrogen	mg/l	MT/ACSE/203	L			< 0.02	*

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the **Construction Industry**

Page: 5 of 6

Site Address Portishead & Pill Station Car Parks

Technical Information for Analytical Results

Analysis

* - denotes analysis covered by our UKAS accreditation

- denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition

AR = Sample tested in as-received condition.

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

Where results are less than the limit of detection, the value of 0 is used in calculations.

Deviating Codes

Deviating Samples

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample

- The date and/or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable a holding time(s). It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- No sampling time given (waters only) unable to confirm if samples are within acceptable holding times. b-
- This Test Item was received in an inappropriate container; it is possible that sample and/or analyte integrity has not been maintained and that the results are c non-representative of the original sample taken.
- d On receipt, the temperature of the sample received was found to fall outside the recommendations of EN ISO 18512:2007 Soils & Granular Wastes.
- The sample was received in a container that had been filled incorrectly which may have compromised sample and/or analyte integrity, rendering the results e – non-representative of the original sample taken.
- The delay between Sampling and Sample Receipt is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some f – deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken
- The delay between Sampling and Analysis is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.

The following Additional Deviating Sample Codes may also be used

- Insufficient sample mass/volume received for accurate quantification of this analyte.
- The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available.

Deviating Methods

- Z-A minor deviation from the Test Method was necessary but this is deemed to have had no impact on the Test Result, the legitimacy of the method validation or the Accreditation Status of the Test Method.
- Υ A significant deviation from the Test Method was necessary which is deemed to have had no impact on the Test Result, however, due to a lack of sufficient supporting validation, the Accreditation Status of the Method has been removed.
- The normal LOD of the instrument/method could not be attained, thus an elevated LOD or LOQ has been applied to the Test Data, however, the data reported W meets the requirements of the Client and does not affect compliance with the specification limit (where applicable).
- One of the QA/QC parameters failed, however, the increased implied Uncertainty associated with the Test Result meets the requirements of the Client and does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.2.9).
- The precision acceptance criteria associated with the Test Method could not be met but the Test Result fulfils the Client's objectives and the elevated Uncertainty Udoes not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.8.10).
- T -The Test Method used was supplied by the Client and involved a simple modification of a Test Method for which ACSE holds accreditation (Quality Manual, Section 18.3.8)

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park

Poole Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and

Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 6 of 6

Certificate of Analysis

Certificate Number 17-88216

11-Jan-17

Client ACS Environmental

Unit 14b

Blackhill Road West

Holton Heath Trading Park

Poole Dorset BH16 6LE

Our Reference 17-88216

Client Reference (not supplied)

Order No E/16-06100/1222

Contract Title E/16-06100/1222

Description 3 Water samples.

Date Received 09-Jan-17

Date Started 09-Jan-17

Date Completed 11-Jan-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Rob Brown Business Manager

Summary of Chemical Analysis Water Samples

Our Ref 17-88216 Client Ref Contract Title E/16-06100/1222

Lab No	1107571	1107572	1107573
Sample ID	26610	26611	26614
Depth			
Other ID			
Sample Type	WATER	WATER	WATER
Sampling Date	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Inorganics						
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40

Key: n/s -not supplied. Page 2 of 3

Information in Support of the Analytical Results

Our Ref 17-88216

Client Ref

Contract E/16-06100/1222

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1107571	26610 WATER		PB 1L	Sample date+time not supplied, Cyanide/Mono	
				pHoh (7 days)	
1107572	26611 WATER		PB 1L	Sample date+time not supplied, Cyanide/Mono	
				pHoh (7 days)	
1107573	26614 WATER		PB 1L	Sample date+time not supplied, Cyanide/Mono	
				pHoh (7 days)	

Key: P-Plastic B-Bottle

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate of Analysis

Certificate Number 16-87661

06-Jan-17

Client ACS Environmental

Unit 14b

Blackhill Road West

Holton Heath Trading Park

Poole Dorset BH16 6LE

Our Reference 16-87661

Client Reference (not supplied)

Order No E/16-06100/1222

Contract Title (not supplied)

Description 5 Misc samples.

Date Received 23-Dec-16

Date Started 23-Dec-16

Date Completed 06-Jan-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Rob Brown Business Manager

Summary of Chemical Analysis Misc Samples

Our Ref 16-87661 Client Ref Contract Title

Lab No	1105079	1105080	1105081	1105082	1105083
Sample ID	26610	26611	26612	26613	26614
Depth					
Other ID					
Sample Type	MISC	MISC	MISC	MISC	MISC
Sampling Date	12/12/16	13/12/16	13/12/16	12/12/16	12/12/16
Sampling Time	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units					
Inorganics								
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Information in Support of the Analytical Results

Our Ref 16-87661 Client Ref Contract

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1105079	26610 MISC	12/12/16	PG		
1105080	26611 MISC	13/12/16	PG		
1105081	26612 MISC	13/12/16	PG		
1105082	26613 MISC	12/12/16	PG		
1105083	26614 MISC	12/12/16	PG		

Key: P-Plastic G-Bag

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Our Ref: J113204 Rev. 2 FI: 5 Your Ref: E/16-06100/1221

Date: 03/01/2017

ENVIROCHEM

Analytical Laboratories Ltd.

12 The Gardens Broadcut, Fareham Hampshire PO16 8SS

Tel: (01329) 287777 Fax: (01329) 287755 www.envirochem.co.uk office@envirochem.co.uk

Asbestos Fibre Identification Report

ACS Environmental Testing Ltd **Client:**

Unit 14B Blackhill Road West, Holton Heath Trading Park, Poole, Dorset, BH16 6LE

Site Address: 26610, 26611, 26612, 26613, 26614,

Sampled By: ACS Environmental Testing Ltd

Date sampled/received: 23rd December 2016 **Date analysed:** 29th December 2016 Analyst/s: Ewelina Kowalczyk Pariyar

Analysis Location: 12 The Gardens, Broadcut, Fareham, Hampshire, PO16 8SS

ANALYTICAL PROCEDURE

Fibre identification was carried out in accordance with the documented `in-house' methods based on the HSE Guidance Note HSG 248. These employed stereo microscopy, polarized microscopy and dispersion staining techniques.

RESULTS

Sample No.	Sample Ref.	Location	Asbestos Detected	Asbestos Type
26610	BS399026	Sand	No	
26611	BS399027	Sand	No	
26612	BS399028	Sand	No	
26613	BS399029	Loam	No	

- 1. Sample(s) were examined for the presence of 6 types of asbestos fibres: crocidolite (blue), amosite (brown), chrysotile (white), anthophyllite, actinolite and tremolite.

 2. Samples collected by the client are evaluated using information provided by the client. For samples collected by the client the date of receipt is deemed to be the same as the date sampled.
- Envirochem is a UKAS accredited laboratory for sampling and identification of asbestos containing materials.
 Comments, observations and opinions are outside the scope of UKAS accreditation.
- 5. The analytical method in the HSG248 does not quantify the amount of asbestos present, therefore UKAS accreditation does not permit quantification. 6. If, during fibre identification, only 1 or 2 fibres are seen and identified as asbestos, then the term 'trace asbestos identified' is used.

PRINT NAME: Mathew Griffiths Authorised signatory

Our Ref: J113204 Rev. 2 FI: 5 Your Ref: E/16-06100/1221

Date: 03/01/2017

ENVIROCHEM

Analytical Laboratories Ltd.

12 The Gardens Broadcut, Fareham Hampshire PO16 8SS

Tel: (01329) 287777 Fax: (01329) 287755 www.envirochem.co.uk office@envirochem.co.uk

Asbestos Fibre Identification Report

ACS Environmental Testing Ltd **Client:**

Unit 14B Blackhill Road West, Holton Heath Trading Park, Poole, Dorset, BH16 6LE

Site Address: 26610, 26611, 26612, 26613, 26614,

Sampled By: ACS Environmental Testing Ltd

Date sampled/received: 23rd December 2016 **Date analysed:** 29th December 2016 Analyst/s: Ewelina Kowalczyk Pariyar

Analysis Location: 12 The Gardens, Broadcut, Fareham, Hampshire, PO16 8SS

ANALYTICAL PROCEDURE

Fibre identification was carried out in accordance with the documented `in-house' methods based on the HSE Guidance Note HSG 248. These employed stereo microscopy, polarized microscopy and dispersion staining techniques.

RESULTS

Sample No.	Sample Ref.	Location	Asbestos Detected	Asbestos Type
26614	BS399030	Silt	No	

- 1. Sample(s) were examined for the presence of 6 types of asbestos fibres: crocidolite (blue), amosite (brown), chrysotile (white), anthophyllite, actinolite and tremolite.

 2. Samples collected by the client are evaluated using information provided by the client. For samples collected by the client the date of receipt is deemed to be the same as the date sampled.
- Envirochem is a UKAS accredited laboratory for sampling and identification of asbestos containing materials.
 Comments, observations and opinions are outside the scope of UKAS accreditation.
- 5. The analytical method in the HSG248 does not quantify the amount of asbestos present, therefore UKAS accreditation does not permit quantification. 6. If, during fibre identification, only 1 or 2 fibres are seen and identified as asbestos, then the term 'trace asbestos identified' is used.

PRINT NAME: Mathew Griffiths Authorised signatory

ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Certificate of Analysis Landfill Waste Acceptance Criteria (WAC)

Certificate Number: 16-06100-Issue 1-Page: 1

Report Fao:	GEO RESULTS

Site Address: Portishead & Pill Station Car Parks

Customer Order No: 16-79208

Date of Sampling: 12/12/2016

Date Received: 20/12/2016

Report Date: 18/01/2017

Please find your certificates of test attached for your samples received in the laboratory on 20/12/2016 under our laboratory reference 16-06100.

Remarks:

None

Results reviewed by:

David Redfern Technical Supervisor

Results approved by:

Mark Rowley Laboratory Manager

Any opinions or interpretations indicated are outside the scope of our UKAS accreditation.

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Excel copies of reports are valid only when accompanied by this PDF certificate.

Client's Sample Description / ACS Material Description are noted for reference only.

Head Office Registered Office

Unit 14B Unit 14B
Blackhill Road West Blackhill Road West
Holton Heath Trading Park
Poole Holton Heath Trading Park
Poole

Dorset BH16 6LE

Dorset BH16 6LE

Tel 01202 628680 ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Fax 01202 628642

Quality Testing & Materials Consultancy to the Construction Industry

Page: 1 of 4 4150

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number 26610

Sample ID 310806 - 16-79208

Clients Sample Ref. TPPH03
Location / Sample Depth (m) 0.30m

Time Sampled

Date Sampled 12/12/2016

Sample Deviating Codes fg

Client's Sample Description

ACS Testing Material Description MADE GROUND. Grey SAND

Principal Matrix (as received) SAND

LANDFILL WASTE ACCEPTANCE CRITERIA (WAC)							
TEST VALUES							
Mass of Undried Test Portion (Mw)	175	g	Volume of Leachant Used (L2)	0.350	litres		
Mass of Dried Test Portion (Mp)	175	g	Volume of Leachant Used (L8)	1.400	litres		
Moisture Content Ratio (MC)	0.0	%	Volume of Eluate (VE1)	0.270	litres		
Dry Matter Content (DR)	100	%	Volume of Eluate (VE2)	1.372	litres		

SOLIDS ANALYSIS				
Analyte	Method	AS	Sample Condition for Analysis	Results
Total Organic Carbon (%)	MT/ACSE/102	*	As received	30.2
Loss on ignition (%)	MT/ACSE/302	*g	Air dried at 30℃	5.0
BTEX (mg/kg)	MT/ACSE/101	*fg	As received	< 0.50
PCBs (7 congeners) (mg/kg)	MT/ACSE/104		Air dried at 30℃	< 1.00
Mineral oil (C10 - C40) (mg/kg)	MT/ACSE/105	*#fg	As received	114
PAHs (mg/kg)	MT/ACSE/106	*#g	Air dried at 30℃	32.5
pH (units)	MT/ACSE/301	*fg	Air dried at 30℃	6.9
ELUATE ANALYSIS				

LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION							
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste					
3 %	5 %	6 %					
		10 %					
6							
1							
500							
100							
	>6						

Analyte	Method	AS	Concentration in Eluate (mg/l)			nt Leached ng/kg)
Eluate Preparation	LP/ACSE/102	*				
Liquid : Solid Ratio (L/S)	LP/ACSE/101	*	L/S 2	L/S 8	L/S 2	L/S 10
pH (units)	MT/ACSE/301	*	8.0	8.4		
Temperature (°C)	MT/ACSE/301		20	20		
Conductivity (mS/m)	MT/ACSE/303	*	17.6	8.32		
Arsenic	MT/ACSE/205	*	0.012	0.012	0.024	0.120
Barium	MT/ACSE/205	*	0.288	0.0658	0.575	1.00
Cadmium	MT/ACSE/205	*	< 0.0003	< 0.0003	< 0.0006	< 0.003
Chromium (total)	MT/ACSE/205	*	0.003	0.002	0.007	0.022
Copper	MT/ACSE/205	*	0.014	0.006	0.028	0.076
Mercury	MT/ACSE/202	*	0.0002	0.0002	0.0004	0.0018
Molybdenum	MT/ACSE/205	*	0.0040	0.0033	0.008	0.034
Nickel	MT/ACSE/205	*	0.0046	0.0014	0.009	0.019
Lead	MT/ACSE/205	*	0.006	< 0.004	0.011	< 0.040
Antimony	MT/ACSE/205	*	0.031	0.016	0.063	0.180
Selenium	MT/ACSE/205	*	< 0.006	< 0.006	< 0.012	< 0.060
Zinc	MT/ACSE/205	*	0.026	0.017	0.053	0.189
Chloride	MT/ACSE/204	*	< 3.00	< 3.00	< 6.00	< 30.0
Fluoride	MT/ACSE/204	*	0.53	0.26	1.06	3.02
Sulphate	MT/ACSE/204	*	8.38	< 3.00	16.8	< 30.00
Total dissolved solids	MT/ACSE/304	*	145	60	290	731.1
Phenol index	MT/ACSE/107	*	< 0.05	< 0.05	< 0.100	< 0.50
Dissolved organic carbon	MT/ACSE/103	*	14.2	3.91	28.4	55.0

LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION						
BS EN 12457-3:2002 LIMIT VALUES (mg/kg) at L/S 10						
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste				
0.5	2	25				
20	100	300				
0.04	1	5				
0.5	10	70				
2	50	100				
0.01	0.2	2				
0.5	10	30				
0.4	10	40				
0.5	10	50				
0.06	0.7	5				
0.1	0.5	7				
4	50	200				
800	15000	25000				
10	150	500				
1000	20000	50000				
4000	60000	100000				
1						
500	800	1000				

Comments: (comments are beyond the scope of UKAS accreditation)

Denotes individual sample results which exceed the landfill waste acceptance criteria for Inert Waste

The landfill waste acceptance criteria limits are provided for guidance only. Eluates prepared in accordance with BS EN 12457-3:2002*

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number 26614

Sample ID 310810 - 16-79208

Clients Sample Ref. TPPH06
Location / Sample Depth (m) 0.90m

Time Sampled

Date Sampled 12/12/2016

Sample Deviating Codes fg

Client's Sample Description

ACS Testing Material Description MADE GROUND. Grey brown sand SILT

Principal Matrix (as received) SILT

LANDFILL WASTE ACCEPTANCE CRITERIA (WAC)								
TEST VALUES								
Mass of Undried Test Portion (Mw)	175	g	Volume of Leachant Used (L2)	0.350	litres			
Mass of Dried Test Portion (Mp)	175	g	Volume of Leachant Used (L8)	1.400	litres			
Moisture Content Ratio (MC)	0.0	%	Volume of Eluate (VE1)	0.283	litres			
Dry Matter Content (DR)	100	%	Volume of Eluate (VE2)	1.358	litres			

SOLIDS ANALYSIS				
Analyte	Method	AS	Sample Condition for Analysis	Results
Total Organic Carbon (%)	MT/ACSE/102	*	As received	3.17
Loss on ignition (%)	MT/ACSE/302	*g	Air dried at 30℃	2.0
BTEX (mg/kg)	MT/ACSE/101	*fg	As received	< 0.50
PCBs (7 congeners) (mg/kg)	MT/ACSE/104		Air dried at 30 ℃	< 1.00
Mineral oil (C10 - C40) (mg/kg)	MT/ACSE/105	*#fg	As received	< 50.0
PAHs (mg/kg)	MT/ACSE/106	*#g	Air dried at 30 ℃	< 2.00
pH (units)	MT/ACSE/301	*fg	Air dried at 30 ℃	6.9
ELUATE ANALYSIS				

LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION							
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste					
3 %	5 %	6 %					
		10 %					
6							
1							
500							
100							
	>6						

LLOXIL	AITALIOIO
Analyto	

Analyte	Method	AS	Concentration in Eluate (mg/l)		Amount Leached (mg/kg)	
Eluate Preparation	LP/ACSE/102	*	(9,.,)		(11	ig/Ng)
Liquid : Solid Ratio (L/S)	LP/ACSE/101	*	L/S 2	L/S 8	L/S 2	L/S 10
pH (units)	MT/ACSE/301	*	7.9	8.5		
Temperature (°C)	MT/ACSE/301		20	20		
Conductivity (mS/m)	MT/ACSE/303	*	32.3	9.52		
Arsenic	MT/ACSE/205	*	0.003	0.020	0.007	0.169
Barium	MT/ACSE/205	*	0.273	0.0660	0.546	0.995
Cadmium	MT/ACSE/205	*	< 0.0003	< 0.0003	< 0.0006	< 0.003
Chromium (total)	MT/ACSE/205	*	0.006	0.002	0.011	0.025
Copper	MT/ACSE/205	*	0.006	0.004	0.011	0.041
Mercury	MT/ACSE/202	*	0.0002	0.0001	0.0004	0.0013
Molybdenum	MT/ACSE/205	*	0.123	0.0199	0.245	0.365
Nickel	MT/ACSE/205	*	0.0018	0.0011	0.004	0.012
Lead	MT/ACSE/205	*	< 0.004	< 0.004	< 0.008	< 0.040
Antimony	MT/ACSE/205	*	0.009	< 0.003	0.017	< 0.030
Selenium	MT/ACSE/205	*	0.023	< 0.006	0.046	< 0.060
Zinc	MT/ACSE/205	*	0.008	0.005	0.016	0.059
Chloride	MT/ACSE/204	*	6.05	< 3.00	12.1	< 30.0
Fluoride	MT/ACSE/204	*	1.14	0.91	2.28	9.48
Sulphate	MT/ACSE/204	*	70.7	7.44	141	176.7
Total dissolved solids	MT/ACSE/304	*	255	75	510	1041
Phenol index	MT/ACSE/107	*	< 0.05	< 0.05	< 0.100	< 0.50
Dissolved organic carbon	MT/ACSE/103	*	8.06	2.62	16.1	35.0

LANDFILL WASTE	ACCEPTANCE CRITE	RIA SPECIFICATION						
BS EN 12457-3	2002 LIMIT VALUES (mg/kg) at L/S 10						
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste						
0.5	2	25						
20	100	300						
0.04	1	5						
0.5	10	70						
2	50	100						
0.01	0.2	2						
0.5	10	30						
0.4	10	40 50 5						
0.5	10							
0.06	0.7							
0.1	0.5	7						
4	50	200						
800	15000	25000						
10	150	500						
1000	20000	50000						
4000	60000	100000						
1								
500	800	1000						

Comments: (comments are beyond the scope of UKAS accreditation)

Denotes individual sample results which exceed the landfill waste acceptance criteria for Inert Waste

The landfill waste acceptance criteria limits are provided for guidance only. Eluates prepared in accordance with BS EN 12457-3:2002*

Site Address Portishead & Pill Station Car Parks

Technical Information for Analytical Results

Analysis

* - denotes analysis covered by our UKAS accreditation

- denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition.

AR = Sample tested in as-received condition

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

Where results are less than the limit of detection, the value of 0 is used in calculations.

For Phenol index, m- and p- cresol are reported as mixed isomers, calibrated with reference to a p-cresol reference solution.

The individual concentrations of m- and p- cresol cannot be quantified using this method, however, the result reported for the mixed isomers will be an over estimation of the true result in samples where m-cresol is present.

Deviating Codes

Deviating Samples

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample taken.

- a The date and/or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable holding time(s). It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- b No sampling time given (waters only) unable to confirm if samples are within acceptable holding times.
- c This Test Item was received in an inappropriate container; it is possible that sample and/or analyte integrity has not been maintained and that the results are non-representative of the original sample taken.
- d On receipt, the temperature of the sample received was found to fall outside the recommendations of EN ISO 18512:2007 Soils & Granular Wastes.
- The sample was received in a container that had been filled incorrectly which may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- f The delay between Sampling and Sample Receipt is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- g The delay between Sampling and Analysis is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.

The following Additional Deviating Sample Codes may also be used.

- I/S Insufficient sample mass/volume received for accurate quantification of this analyte.
- U/S The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available.

Deviating Methods

- Z A minor deviation from the Test Method was necessary but this is deemed to have had no impact on the Test Result, the legitimacy of the method validation or the Accreditation Status of the Test Method.
- Y A significant deviation from the Test Method was necessary which is deemed to have had no impact on the Test Result, however, due to a lack of sufficient supporting validation, the Accreditation Status of the Method has been removed.
- W The normal LOD of the instrument/method could not be attained, thus an elevated LOD or LOQ has been applied to the Test Data, however, the data reported meets the requirements of the Client and does not affect compliance with the specification limit (where applicable).
- V One of the QA/QC parameters failed, however, the increased implied Uncertainty associated with the Test Result meets the requirements of the Client and does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.2.9).
- U The precision acceptance criteria associated with the Test Method could not be met but the Test Result fulfils the Client's objectives and the elevated Uncertainty does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.8.10).
- T The Test Method used was supplied by the Client and involved a simple modification of a Test Method for which ACSE holds accreditation (Quality Manual, Section 18.3.8).

ATKINS CatWasteSoil

Site Name	Portishead & Pill Station Car Parks					
Location	Portishead & Pill Station Car Parks					
Site ID						
Job Number	16-06100					
Date	18/01/2017					
User Name	edward.davies@acstesting.co.uk					
Company Name	ACS Testing Ltd					

Hole ID	Sample Depth	Hazardous Waste Y/N	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8	HP9	HP10	HP11	HP12	HP13	HP14	HP15	HP16
26610	0m	N	No	No	No	No	No	No	No									
26611	0m	N	No	No	No	No	No	No	No									
26612	0m	Y	No	No	No	No	Yes	No	No									
26613	0m	N	No	No	No	No	No	No	No									
26614	0m	N	No	No	No	No	No	No	No									
																		<u> </u>
																		
																		
																		
																		
																		\vdash
																		
																		
																		igwdown
																		ldot

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26610	0m	pН	0.00000	N				
26610	0m	Benzene	0.00002	N				H225 test
26610	0m	Naphthalenene	0.00008	N				H228 test
26610	0m	Acenaphthylene	0.00011	N				
26610	0m	Acenaphthene	0.00002	N				
26610	0m	Fluorene	0.00004	N				
26610	0m	Phenanthrene	0.00019	N				
26610	0m	Anthracene	0.00041	N				
26610	0m	Fluoranthene	0.00057	N				
26610	0m	Pyrene	0.00059	N				
26610	0m	Benzo(a)anthracene	0.00017	N				
26610	0m	Chrysene	0.00024	N				
26610	0m	Benzo(b)fluoranthene	0.00030	N				
26610	0m	Benzo(k)fluoranthene	0.00010	N				
26610	0m	Benzo(a)pyrene	0.00015	N				
26610	0m	Indeno(1,2,3-cd)pyrene	0.00011	N				
26610	0m	Di-benz(a,h,)anthracene	0.00005	N				
26610	0m	Benzo(g,h,i)perylene	0.00012	N				
26610	0m	(sum of congeners or total	0.00002	N				
26610	0m	hydrocarbon/oil with marker	0.01141	N				H225 test
26610	0m	Arsenic	0.00917	N				
26610	0m	Boron	0.00033	N				
26610	0m	Cadmium	0.00084	N				
26610	0m	Chromium (Total)	0.00499	N				
26610	0m	Copper	0.03670	N				
26610	0m	Lead	0.03259	N				
26610	0m	Mercury	0.00003	N				
26610	0m	Nickel	0.01932	N				
26610	0m	Zinc	0.00000	N				
26610	0m	Zincx	0.13098	N				
26610	0m	Free Cyanide	0.00010	N				H224 test
26611	0m	рН	0.00000	N				

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26611	0m	Naphthalenene	0.00006	N				H228 test
26611	0m	Acenaphthylene	0.00005	N				
26611	0m	Acenaphthene	0.00001	N				
26611	0m	Fluorene	0.00003	N				
26611	0m	Phenanthrene	0.00018	N				
26611	0m	Anthracene	0.00024	N				
26611	0m	Fluoranthene	0.00032	N				
26611	0m	Pyrene	0.00031	N				
26611	0m	Benzo(a)anthracene	0.00013	N				
26611	0m	Chrysene	0.00022	N				
26611	0m	Benzo(b)fluoranthene	0.00029	N				
26611	0m	Benzo(k)fluoranthene	0.00009	N				
26611	0m	Benzo(a)pyrene	0.00011	N				
26611	0m	Indeno(1,2,3-cd)pyrene	0.00011	N				
26611	0m	Di-benz(a,h,)anthracene	0.00004	N				
26611	0m	Benzo(g,h,i)perylene	0.00014	N				
26611	0m	hydrocarbon/oil with marker	0.01137	N				H225 test
26611	0m	Arsenic	0.00829	N				
26611	0m	Boron	0.00376	N				
26611	0m	Cadmium	0.00101	N				
26611	0m	Chromium (Total)	0.00682	N				
26611	0m	Copper	0.10248	N				
26611	0m	Lead	0.01833	N				
26611	0m	Mercury	0.00003	N				
26611	0m	Nickel	0.02241	N				
26611	0m	Zinc	0.00000	N				
26611	0m	Zincx	0.13136	N				
26611	0m	Free Cyanide	0.00010	N				H224 test
26612	0m	pĤ	0.00000	N				
26612	0m	Naphthalenene	0.00010	N				H228 test
26612	0m	Acenaphthylene	0.00005	N				
26612	0m	Acenaphthene	0.00003	N				

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26612	0m	Fluorene	0.00005	N				
26612	0m	Phenanthrene	0.00025	N				
26612	0m	Anthracene	0.00024	N				
26612	0m	Fluoranthene	0.00040	N				
26612	0m	Pyrene	0.00037	N				
26612	0m	Benzo(a)anthracene	0.00017	N				
26612	0m	Chrysene	0.00026	N				
26612	0m	Benzo(b)fluoranthene	0.00034	N				
26612	0m	Benzo(k)fluoranthene	0.00009	N				
26612	0m	Benzo(a)pyrene	0.00018	N				
26612	0m	Indeno(1,2,3-cd)pyrene	0.00014	N				
26612	0m	Di-benz(a,h,)anthracene	0.00005	N				
26612	0m	Benzo(g,h,i)perylene	0.00015	N				
26612	0m	hydrocarbon/oil with marker	0.00724	N				H225 test
26612	0m	Arsenic	0.01076	N				
26612	0m	Boron	0.00118	N				
26612	0m	Cadmium	0.00084	N				
26612	0m	Chromium (Total)	0.00480	N				
26612	0m	Copper	0.07580	N				
26612	0m	Lead	0.00000	N				
26612	0m	Leadx	0.19729	Υ	HP14		H410	
26612	0m	Mercury	0.00023	Ν				
26612	0m	Nickel	0.01746	N				
26612	0m	Zinc	0.00000	N				
26612	0m	Zincx	0.36145	Υ	HP14		H410	
26612	0m	Free Cyanide	0.00010	N				H224 test
26613	0m	pН	0.00000	N				
26613	0m	Naphthalenene	0.00002	N			·	H228 test
26613	0m	Acenaphthylene	0.00001	N				
26613	0m	Acenaphthene	0.00000	N				
26613	0m	Fluorene	0.00001	N			·	
26613	0m	Phenanthrene	0.00003	N				

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26613	0m	Anthracene	0.00002	N				
26613	0m	Fluoranthene	0.00002	N				
26613	0m	Pyrene	0.00002	N				
26613	0m	Benzo(a)anthracene	0.00001	N				
26613	0m	Chrysene	0.00001	N				
26613	0m	Benzo(b)fluoranthene	0.00002	N				
26613	0m	Benzo(k)fluoranthene	0.00001	N				
26613	0m	Benzo(a)pyrene	0.00001	N				
26613	0m	Indeno(1,2,3-cd)pyrene	0.00001	N				
26613	0m	Di-benz(a,h,)anthracene	0.00000	N				
26613	0m	Benzo(g,h,i)perylene	0.00001	N				
26613	0m	hydrocarbon/oil with marker	0.00232	N				H225 test
26613	0m	Arsenic	0.00787	N				
26613	0m	Boron	0.00106	N				
26613	0m	Cadmium	0.00038	N				
26613	0m	Chromium (Total)	0.00783	N				
26613	0m	Copper	0.00973	N				
26613	0m	Lead	0.01317	N				
26613	0m	Mercury	0.00002	N				
26613	0m	Nickel	0.00988	N				
26613	0m	Zinc	0.00000	N				
26613	0m	Zincx	0.05815	N				
26613	0m	Free Cyanide	0.00010	N				H224 test
26614	0m	рН	0.00000	N				
26614	0m	Benzene	0.00002	N				H225 test
26614	0m	Naphthalenene	0.00002	N				H228 test
26614	0m	Acenaphthylene	0.00000	N				
26614	0m	Acenaphthene	0.00001	N				
26614	0m	Fluorene	0.00000	N				
26614	0m	Phenanthrene	0.00001	N				
26614	0m	Anthracene	0.00000	N				
26614	0m	Fluoranthene	0.00000	N				

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26614	0m	Pyrene	0.00000	N				
26614	0m	Benzo(a)anthracene	0.00000	N				
26614	0m	Chrysene	0.00000	N				
26614	0m	Benzo(b)fluoranthene	0.00000	N				
26614	0m	Benzo(k)fluoranthene	0.00000	N				
26614	0m	Benzo(a)pyrene	0.00000	N				
26614	0m	Indeno(1,2,3-cd)pyrene	0.00000	N				
26614	0m	Di-benz(a,h,)anthracene	0.00000	N				
26614	0m	Benzo(g,h,i)perylene	0.00000	N				
26614	0m	Arsenic	0.00804	N				
26614	0m	Boron	0.00125	N				
26614	0m	Cadmium	0.00013	N				
26614	0m	Chromium (Total)	0.00378	N				
26614	0m	Copper	0.00768	N				
26614	0m	Lead	0.00183	N				
26614	0m	Mercury	0.00003	N				
26614	0m	Nickel	0.00916	N				
26614	0m	Zinc	0.00000	N				
26614	0m	Zincx	0.01287	N				
26614	0m	Free Cyanide	0.00010	N				H224 test

Portishead Branch Line (MetroWest Phase 1)

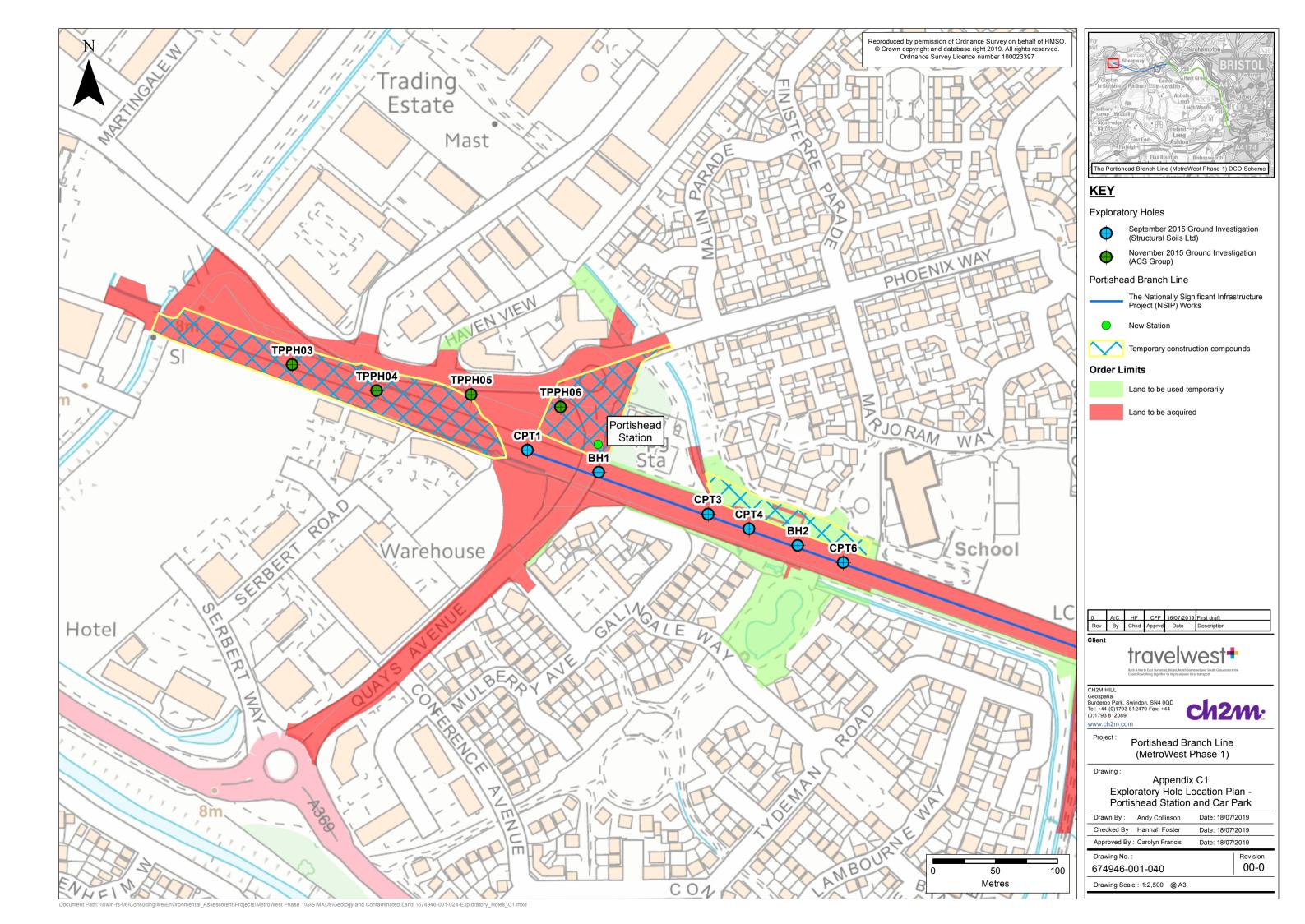
TR040011

Applicant: North Somerset District Council
6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex C1
Portishead Station and Car Park
The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M



Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council

6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex C2 Avon

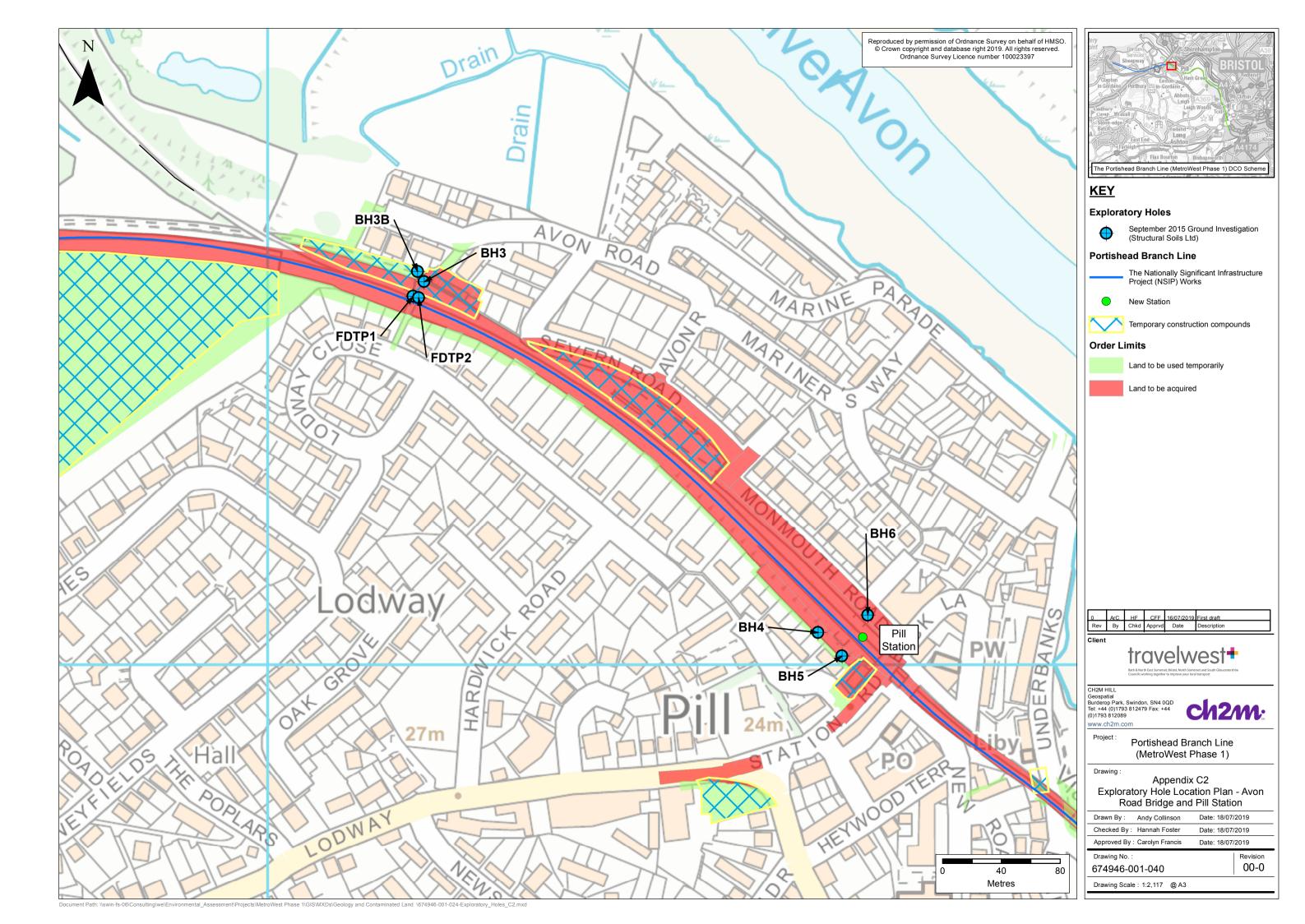
Road Bridge and Pill Station

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M



Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council
6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex D1
Portishead Station and Car Park
The Infrastructure Planning (Applications: Prescribed Forms and
Procedure) Regulations 2009, regulation 5(2)(a)
Planning Act 2008

Author: CH2M

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

TRIAL PIT LOG

Trial Pit No. TPPH03

		www.acste	sting.co.uk			Sheet 1 of 1	
Client	North Somerset Council		Depth	Dimensions (m):	Lab Ref.	Hole Type TP	
Site	Portishead Car Park		(m): 3.50	1.90	Plant Used:	Scale	
Location	cation Land at Harbour Road, Portishead, Somerset			0.60	JCB 3CX ECO Wheeled Excavator with 600mm bucket	1:20	
Ground L	_evel (mAOD): 107.78	Co-ords:	34729	9.0E, 176431.0N	Date(s) 12/12/2016	- Logged By AD	

			SS			Sample		Tootin-	
Stratum Description	1	Depth (Level)	nickne	Legend	Water Strikes	(Type) Depth	Donth	Testing	Result
Gravel is fine, medium and coarse sub-rounded of clinker, brick, mac and stone. MADE GROUND. Grey sandy GR	e; angular to adam, glass	— 0.45 (107.33)	(0.45) TI				Берш	Туре	Resul
rounded of stone and clinker.		1.00 (105.50)	(0.75)						
Stiff grey mottled brown clayey sa Becoming very clayey with depth.	ndy SILT.	1.20 (106.58)	(1.20)						
Soft to firm bluish grey silty CLAY.		2.40 (105.38)							
End of Trial Pit at 3.500n	n	3.50 (104.28)	(1.10)						
	MADE GROUND. Dark grey grave Gravel is fine, medium and coarse sub-rounded of clinker, brick, made and stone. MADE GROUND. Grey sandy GR is fine, medium and coarse; angul rounded of stone and clinker. Stiff grey mottled brown clayey sa Becoming very clayey with depth.	MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse; angular to sub-	MADE GROUND. Dark grey gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of clinker, brick, macadam, glass and stone. MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse; angular to sub-rounded of stone and clinker. Stiff grey mottled brown clayey sandy SILT. Becoming very clayey with depth. 1.20 (106.58) Soft to firm bluish grey silty CLAY.	MADE GROUND. Dark grey gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of clinker, brick, macadam, glass and stone. MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse; angular to sub-rounded of stone and clinker. Stiff grey mottled brown clayey sandy SILT. Becoming very clayey with depth. 1.20 (106.58) Soft to firm bluish grey silty CLAY.	MADE GROUND. Dark grey gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of clinker, brick, macadam, glass and stone. MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse; angular to sub-rounded of stone and clinker. Stiff grey mottled brown clayey sandy SILT. Becoming very clayey with depth. Soft to firm bluish grey silty CLAY.	MADE GROUND. Dark grey gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of clinker, brick, macadam, glass and stone. MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse; angular to sub-rounded of stone and clinker. Stiff grey mottled brown clayey sandy SILT. Becoming very clayey with depth. Soft to firm bluish grey silty CLAY. 2.40 (105.38)	MADE GROUND. Dark grey gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of clinker, brick, macadam, glass and stone. MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse; angular to sub-rounded of stone and clinker. Stiff grey mottled brown clayey sandy SILT. Becoming very clayey with depth. Soft to firm bluish grey silty CLAY. 2.40 (105.38)	MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse, angular to sub-rounded of stone and clinker. MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse, angular to sub-rounded of stone and clinker. Stiff grey mottled brown clayey sandy SILT. Becoming very clayey with depth. 240 (105.58) Soft to firm bluish grey silty CLAY.	MADE GROUND. Dark grey gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of clinker, brick, macadam, glass and stone. MADE GROUND. Grey sandy GRAVEL. Gravel is fine, medium and coarse; angular to sub-rounded of stone and clinker. Stiff grey mottled brown clayey sandy SILT. Becoming very clayey with depth. 2.40 (105.38) Soft to firm bluish grey silty CLAY.

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Pit Stability: Stable

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Groundwater not encountered.

107.44

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Technical Notes (where applicable):

Co-ords:

Ground Level (mAOD):

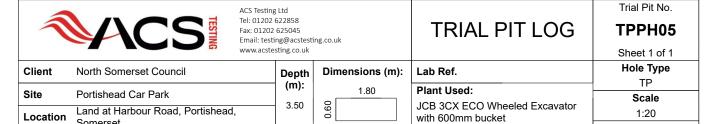
ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk

TRIAL PIT LOG

12/12/2016

Pit Stability:

Groundwater: Water seepage from base up to 2.90m.


Trial Pit No. TPPH04

1 of 1

		www.acste	sting.co.uk			Sheet 1 of 1
Client	North Somerset Council		Depth	Dimensions (m):	Lab Ref.	Hole Type
Site	Portishead Car Park		(m): 3.00	2.10	Plant Used:	Scale
Location	Land at Harbour Road, Portish Somerset	ead,	3.00	0.6	JCB 3CX ECO Wheeled Excavator with 600mm bucket	1:20
				1		Logged By

347367.0E, 176410.0N

Date(s) ΑD Sample (Type) Depth Depth (Level) Testing Water Strikes **Stratum Description** Legend (m) Depth Type Results MADE GROUND. Dark grey very gravelly SAND. Gravel is fine, medium and coarse; angular to sub-rounded of clinker, stone and brick. Wood recorded below 0.60m. 1.23 (106.21) Stiff grey mottled brown clayey SILT. (0.87)2 2.10 (105.34) Very soft to soft bluish grey silty CLAY. 3.00 (104.44) End of Trial Pit at 3.000m

Pit Stability:

Stable

Groundwater: Small amount of water seepage at 2.70m.

Logged By

Somerset

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Technical Notes (where applicable):

Grou	nd Level (mAOD):	107.46	Co-ords:	347443.0E,	17640	7.0N	Date(s)	13/12/2	016		AD
All units =	Stratu	um Description		Depth (Level)	Thickness	Legend	Water Strikes	Sample (Type) Depth		Testing	
- (m)	TOPSOIL. Soft grey SILT. Gravel is fine, angular to rounded of	ish brown san medium and c of stone.	dy gravelly coarse; sub-		(0.68) Thic		STRIKES	Depth	Depth	Туре	Results
1	Stiff greyish brown o	clayey sandy S	SILT.	0.68 (106.78)	(1.17)						
2	Soft to firm brownish	n grey silty CL	AY.	1.85 (105.61)	(0.95)						
3	Very soft bluish grey	r silty CLAY.		2.80 (104.66)	(0.70)		× × × × × × × × × × × × × × × × × × ×				
	End of	Trial Pit at 3.500m)	3.50 (103.96)		——————————————————————————————————————	 				

ACS Testing Ltd Tel: 01202 622858 Fax: 01202 625045 Email: testing@acstesting.co.uk www.acstesting.co.uk

TRIAL PIT LOG

Trial Pit No. TPPH06

ΑD

		www.acste	sting.co.uk			Sheet 1 of 1
Client	North Somerset Council		Depth	Dimensions (m):	Lab Ref.	Hole Type TP
Site	Portishead Car Park		(m):	1.70	Plant Used:	Scale
Location	Land at Harbour Road, Portish	nead,	2.10	09:0	JCB 3CX ECO Wheeled Excavator with 600mm bucket	1:20
Ground L	Somersetevel (mAOD): 107.36	Co-ords:	34751	5.0E, 176397.0N	Date(s) 13/12/2016	Logged By AD

All units	Otanta	Depth	ness		Water	Sample		Testing	
(m)	Stratum Description	Depth (Level)	Thickness	Legend	Strikes	Sample (Type) Depth	Depth	Туре	Results
- - - -	TOPSOIL. Soft brown clayey sandy gravelly SILT. Gravel is fine, medium and coarse; angular to sub-rounded of stone. MADE GROUND. Grev mottled brown clayey	- 0.35 (107.01)	(0.35)						
1	MADE GROUND. Grey mottled brown clayey sandy SILT. Rare brick noted. Black gravel noted in the northern end of the pit at 1.20m, possible unknown service.		(56:0)						
- - - - - - - - - - - - - - - - - - -	Grey silty SAND.	- 1.30 (106.06)	(0.60)						
2 —	Firm grey mottled brown clayey SILT.	1.90 (105.46)		X X X X X X X X X X X X X X X X X X X					
3	End of Trial Pit at 2.100m	- 2.10 (105.26)							

Remarks: Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930.

Pit Stability:

Technical Notes (where applicable):

Consistency of fine grained soil assessed by hand worked tests in accordance with BS5930. Chalk descriptions in accordance with CIRIA C574.

Groundwater: Groundwater not encountered.

Contract Reference: 730673

KEY TO EXPLORATORY HOLE LOGS - SUMMARY OF ABBREVIATIONS

SAMPLING

Sample type codes

В = Bulk disturbed sample.

Core sample. C =

CS Core sample taken from rotary core for lab testing. =

Small disturbed sample. D

Small disturbed sample originating from SPT test. **DSPT**

= Soil sample for environmental testing. ES ExU Extruded undisturbed sample remnants.

Undisturbed driven tube sample - Number of blows indicated. % recovery reported.

Undisturbed sample detail codes

Undisturbed sample UT100 $U_{(UT100)}$

IN-SITU TESTING

 $SP\underline{T}_{(c)}$ Standard Penetration Test using a solid 60 degree cone.

Standard Penetration Test using split spoon sampler. (SPT_(NR) indicates 'No Sample Recovery'). * denotes extrapolated N value. NP denotes 'No Penetration'. SPT'

=

HP = Hand Penetrometer Test. Value given as shear strength c₀, in kPa.

Field Vane Test. Peak value (c_n) & Residual value (c_r) , given as shear strength in kPa.

ROTARY DRILLING INFORMATION

W Water flush returns (%) Total core recovery (%) TCR = Solid core recovery (%) SCR Rock quality designations (%) RQD

Fracture spacing (mm).

In the fracture column (i) denotes discontinuity is infilled (refer to Fracture Table for details).

Where variable the minimum - average - maximum spacing may be quoted.

'NI' denotes non-intact core. 'NA' denotes not applicable.

All lengths used to determine rock core mechanical properties taken along the centre line of the core.

Obvious induced fractures have been ignored.

The assessment of solid core is based on lengths that show a full diameter and not necessarily

a full circumference.

AZCL = Assessed zone of core loss.

ADDITIONAL NOTES

1. All soil and rock descriptions and legends in general accordance with BS EN ISO 14688-1, 14688-2, 14689-1, and BS5930:1999 including Amendment 2 (2010).

2. Material types divided by a broken line (- - -) indicates an unclear boundary.

3. The data on any sheet within the report showing the AGS icon is available in the AGS format.

GINT_LIBRARY_V8_05.GLBIGrétrext G - LEGEND - 1 OF 2 | 730673_METROWEST.GPJ - v8_05 | 29/01/16 - 15:30 | IF.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email:admin@soils.co.uk

Contract Reference: 730673

KEY TO EXPLORATORY HOLE LOGS - SUMMARY OF GRAPHIC SYMBOLS

WATER COLUMN SYMBOLS

First water strike, second water strike etc.

Standing water level following first strike, standing water level following second strike etc.

Seepage.

Standing water level recorded at documented date.

MATERIAL GRAPHIC LEGENDS

CLAY

Clayey gravelly SAND

Gravelly clayey SAND

Conglomerate

Clayey sandy GRAVEL

Sandy clayey GRAVEL

Silty gravelly CLAY

MADE GROUND

Mudstone

PEAT

Possible MADE GROUND

Sandstone

Sandy CLAY

Sandy silty CLAY

Sandy GRAVEL

Gravelly sandy CLAY

Sandy gravelly CLAY

Siltstone

Sandy PEAT

Silty CLAY

INSTRUMENTATION SYMBOLS

Asphalt

Backfill

Bentonite seal

Concrete

Gravel filter

Stopcock cover

Flush cover

Plain pipe

Slotted pipe

INSPECTION PIT LOG

Contract:						Client:		Trial P	it:	
	N	AetroW					Arup		(CPT1
Contract Ref:						Ground Level:	National Grid Co-ordinate:	Sheet:		
73	<u>80673</u>		End:	09.09	9.15	7.84	E:347488.3 N:176362.2		1	of 1
	es and Ir	n-situ Tests	sults	Water	Backfill		Description of Strata		Depth (Thick	Material Graphic
Deptil 1	NO Ty	De Res	Suits	-		MADE GROUND: Do	rk brownish slightly silty gravelly CLA	V with	ness)	Legend XXXXX
-						abundant roots and root coarse ballast and limest	tlets. Gravel is angular to subangular	fine to	(0.30)	
0.60	1 ES	S 1TUB,	IJ,1VOC			low cobble content. S subangular fine to coar	k greyish black clayey sandy GRAVEL and is fine to coarse. Gravel is ang se limestone, granite and ballast. Cobb e and granite up to 20mm.	ular to	(0.90)	
1.20-1.30	2 D					CLAY with a low cobb to coarse limestone, gra	COUND: Dark brown mottled grey ge content. Gravel is angular to subangunite and ballast. Cobbles are angular and granite up to 150mm. o 1.30m depth.	lar fine ſ	1.20	

General Remarks

- Location CAT and Genny scanned prior to excavation.
 Inspection pit remained dry and stable.
 Backfilled with arisings on completion.

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log TRIAL PIT LOG - NO PLAN | 730673 METROWEST.GPJ - v8 05 | 0701/16 - 12:04 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

			All dimens	sions in metres	Scale:	1:25	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	AASmith	Checked By:	AGS

100										III				L	.UG
Contract:								Client:					Trial P	it:	
		Me	etroW	est						Arup				(CPT3
Contract Re	f:			Start:	08.0	9.15	Grour	nd Level:		National Grid	Co-ordinate	:	Sheet:		
,	7300	573		End:	08.0	9.15		7.75		E:34763	3.5 N:1	76310.7		1	of 1
Sam	ples a	nd In-si	tu Tests		ter	cfill				D ::: 6					Material
Depth	No	Туре	Res	sults	Water	Backfill				Description of	Strata			(Thick ness)	Graphic Legend
0.20 0.20-0.70	1 4 2 3	ES B ES	1TUB,1	J,1VOC			with angu MA freq Grav and 150i MA angu Cob Darl cont coar and	a abundant rular to subang DE GROUN uent rootlets vel is angula slag. Cobbl mm. DE GROUN lar to suban bles are angula sare angula sare angula sare limestone sandstone.	roots and gular fine ND: Dar to suba les are an ND: Dar gular finular calcifus own slights fine to cand sand sand	brownish blac rootlets. San to coarse balla k grey to blac low cobble congular fine to c gular limestone a to coarse limited limestone a tly sandy grave coarse. Gravel listone. Cobble 1.20m depth.	ad is fine to st, limestone k clayey san ntent. Sand coarse ballast, sla gravelly CO estone, clink and sandstone llly CLAY vis angular to	coarse. Green co	ravel is slag. The coarse clinker or up to ravel is and slag. Im.	0.20 - (0.50) - (0.40) - (1.10 - 1.20	I cgalu
-														- -	

General Remarks

- Location CAT and Genny scanned prior to excavation.
 Inspection pit remained dry and stable.
 Backfilled with arisings on completion.

			All dimens	ions in metres	Scale:	1:25	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	AASmith	Checked By:	AGS

Op										INSP		ION		L	UG
Contract:								Client:					Trial Pi	t:	
		Me	troW	/est						Arup					CPT4
Contract Re	f:			Start:	08.09	9.15	Groun	nd Level:		National Grid C	Co-ordinate:		Sheet:		
	7306	573		End:	08.09	9.15		7.71		E:347666	5.5 N:17	5298.9		1	of 1
	î i		tu Tests		ater	ckfill				Description of S	strata			Depth (Thick	Material Graphic
Depth	No	Туре	Res	sults	≱	Ba								ness)	Legend
Depth 0.30-0.80 0.50 1.00-1.20	No 2 1 1 3 3	Type B ES D	Res	sults	Water	Backfill	MAI low suba sphe MAI to su 200r Dark control co 200r	a high orgoarse. DE GROU cobble compular fin rical to tab DE GROU bangular sum. brown reent. Sand parse limes mm.	JND: Dar ganic content. So e to coars bular ballas JND: Darl spherical to mottled recisione. Cob	Description of S rk brown to blace rk grey slightly common to the description of S rk grey slightly common to the description of S rk grey slightly common to the description of S rk grey slightly common to the description of S rk grey slightly common to the description of S rk grey slightly common to the description of S rk grey slightly common to the description of S rk grey slightly common to the description of S rk brown to blace rk grey slightly common to the description of S rk brown to blace rk grey slightly common to the description of S rk brown to blace rk grey slightly common to the description of S rk brown to blace rk grey slightly common to the description of S rk brown to blace rk grey slightly common to the description of S r	ck silty slight roots and roots layey sandy coarse. Granestone. Co DBBLES. Co and calcified	GRAVEL vel is anguibbles are a di limestone ith a low o subrounde	with a alar to ngular ngular to up to cobble ed fine a	(Thick	
														- - - -	

General Remarks

- Location CAT and Genny scanned prior to excavation.
 Inspection pit remained dry and stable.
 Backfilled with arisings on completion.

16 - 12:04 IF.	ask@soils.co.uk.
GPJ - v8_05 07/01,	oils.co.uk, Email:
WEST.	1004, Web: www.s
NO PLAN 730673	00, Fax: 0117-947-
RIAL PIT LOG - N	ristol, BS3 4EB. Tel: 0117-947-1000, Fax: 011'
3	Bristol, BS3 4EB.
on: v8_05 - Core+1	edminster
Lib0004 PrjVersic	school, Stillhouse
Versic	Bristol: The
ARY V8 05.GLB Lil	Ltd, Head Office -]
GINT LIBRAR	al So

All dimensions in metres 1:25 Scale: Logged By: Checked Method Plant

Used: Used: Hand dug Hand tools

By: **AASmith**

INSPECTION PIT LOG

Contract:							Client:		Trial P	it.	
Contract.		Me	etroWe	st			Chent.	Arup	IIIai I		CPT6
Contract Re	f:	1,1			07.09	.15	Ground Level:	National Grid Co-ordinate:	Sheet:		
7	7306	673	E	End:	07.09	.15	7.64	E:347742.4 N:176271.9		1	of 1
Sam	ples a	nd In-si	tu Tests		ter	- III				Depth	
Depth	No	Type	Resul	ts	Water	Backfill		Description of Strata		(Thick ness)	Graphic Legend
0.10-0.80	2	В					\with abundant rootlets. S			0.10	
0.30	1	ES	1TUB,1J,1	IVOC			rootlets and cobbles. S	grey clayey sandy GRAVEL with occ and is fine to coarse. Gravel is ang ballast. Cobbles are tabular angular ba	ular to	(0.70)	
0.80-1.20	3	D					MADE GROUND: Dar angular to subangular find ballast and calcified limes	k grey clayey gravelly COBBLES. Go to coarse ballast. Cobbles are angular tone up to 150mm.	ravel is tabular	0.80 (0.35) - 1.15	
					XXX		Dark greyish brown slig coarse. Gravel is angular Inspection pit hand dug to	htly sandy gravelly CLAY. Sand is to subangular fine to coarse ballast. 1.20m depth.	fine to	1.13	

General Remarks

- Location CAT and Genny scanned prior to excavation.
 Inspection pit remained dry and stable.
 Backfilled with arisings on completion.

			All din	nensions in metres	Scale:	1:25	
Method Used:	Hand dug	Plant Used:	Hand tools	Logged By:	AASmith	Checked By:	AGS

GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:13 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Used:

STRUCTURAL SOILS

BOREHOLE LOG

Contract:			Client:		I	Borehole	:		
Metro	West			Arup				В	BH1
Contract Ref:	Start: 15.09	9.15 Groun	d Level:	National Grid Co-ordinate:	5	Sheet:			
730673	End: 18.0	9.15	8.09	E:347545.7 N:170	6344.4		1	of	7

	<u>/30</u>	0/3	End:	18.09.15	0.09		E:34/343./ N:1/0344.4	1	01 /
		Sample	s & Testing	Mechanical	Log 🕹 , 등	ı		Depth	Material
Depth (m)	No	<u> </u>	Results	TCR SCR RQD (%) (%)		Water	Description of Strata		Graphic Legend
0.40	1 2	B ES					MADE GROUND: Soft dark brown slightly sandy slightly gravelly CLAY with frequent roots (<10mm diameter) and rootlets. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse flint, ballast and brick. MADE GROUND: Dark grey to black clayey sandy GRAVEL with a low cobble content. Sand	0.20	
0.80	3	В					is fine to coarse. Gravel is subangular fine to coarse ballast, slag, clinker and limestone. Cobbles are angular tabular limestone and slag up to 200mm.	(1.00)	
1.00	4	ES						1.20	
1.20-1.65	1	SPT	N=4				Very stiff greyish brown slightly sandy CLAY with occasional black mottling of organic matter. Sand is fine to coarse.	-	
1.50	5	D							
1.80	6	HP D	c _u =150	Window run 111mm dia (100% rec)				(1.30)	
2.10 2.20-2.60	7	HP U	c _u =162					2.50	
2.60-2.70 2.60 2.70-3.15 3.00-3.20	8 2 9	D HP SPT	c _u =125 N=6				Stiff greyish brown mottled bluish grey slightly sandy CLAY with occasional brown mottling of organic matter. Sand is fine to coarse.	(0.70)	
							Stiff greyish brown mottled bluish grey slightly sandy CLAY with occasional brown organic	3.20	
3.40 3.50-3.70	10	HP D	c _u =72	Window run 111mm dia (100% rec)			matter. Sand is fine to coarse.	(1.00)	
3.70-4.00	11	U						-	
4.00-4.20	12	D HP	c _u =75				Version to the transfer of the control of the contr	4.20	
4.20-4.65	3	SPT	N=6	Window run 111mm dia (100% rec)			Very soft dark bluish grey CLAY.	-	

	Boring Pr	ogress and	Water O	bservations	
Date	Time	Borehole	Casing	Borehole Diameter	Water
Date	Tille	Depth	Depth	(mm)	Depth
15/09/15	16:30	1.20	None	400	Dry
16/09/15	08:00	1.20	None	400	Dry
16/09/15	17:00	9.60	8.95	131	3.00
17/09/15	09:00	9.00	8.95	131	3.20
17/09/15	17:30	20.30	18.00	116	3.80
18/09/15	08:00	18.80	18.00	116	3.90
18/09/15	17:00	21.90	18.00	116	3.60
18/09/15	08:00	18.80	18.20	116	3.90
Method	Dynamic	sampling	+ Pla	nt	

General Remarks

Location CAT and Genny scanned prior to excavation.
 Inspection pit remained dry and stable.
 Dynamic sampling from ground level to 18.30m. Rotary coring of soft rock using T6-116 barrel with PCD bit and water flush between 18.30m to 21.90m with limited non intact recovery. 20.40m to 21.90m drilled using open hole techiques to obtain CPT at base of the hole.
 Somm diameter HDPE and 19mm diameter PVC gas and groundwater

1:25 All dimensions in metres Scale: Dynamic sampling + Rotary Cored Drilled Checked Plant Logged AASmith + Used: Comacchio GEO 205 DW By: By: By: **BSaimen**

BOREHOLE LOG

Contract:							Client:					Bore	hole:		
	MetroWest									Arup				Bl	H1
Contract Ref	10.00,110						nd Level:			National Grid Co-	ordinate:	Shee	et:		
7	730673 End: 18.09.15						8.09)		E:347545.7	7 N:17634	4.4	2	of	7
- 1		Samples	s & Test	ing	Mecha	anical L	.og ≥	er					Deptl	Mat	teria
Depth (m)	Depth (m) No Type Results TCR SCR RQ (%) (%) (%)				RQD (%)	/ _	Water		Descript	tion of Strata		(Thick ness)		aphic gend	
							*H***	•	Very	soft dark bluich o	rev CLAV			_	_

Ī			Samples	s & Testing	Mechanical	Log 🕹 . 🗟	L		Depth	Material
	Depth (m)	No	Туре	Results	Mechanical TCR SCR RQD (%) (%) (%)	Backfill (mm) Instru-	Water	Description of Strata	(Thick ness)	
	4.70-4.80 4.80	13	D HP	c _u =12				Very soft dark bluish grey CLAY. (stratum copied from 4.20m from previous sheet)	(1.20)	
	5.00-5.10 5.00 5.20	14	D HP HP	c _u =25	Window run 111mm dia (100% rec)			at 5.20m a thin band (50mm) of amorphous	- - -	
-	5.40-5.50	15	D D	c _u =<12				peat. Very soft bluish grey CLAY with rare rootlets	5.40	
	5.60 5.65 5.70-6.30	46	HP HP U	c _u =<12 c _u =25 75 blows				(<1mm diameter).	- - -	
, 	_5.70	,	НР	44% recovery c _u =25					- -	
	6.30-6.40	16	D				<		- -	
	6.60 6.70-6.80	17	HP D	c _u =<12/<12/<12	Window run 111mm dia				- - -	
	7.00 7.10-7.20	18	D	c _u =<12/<12/<12					- - -	
	7.30 7.40-7.50 7.50-7.95	19 4	HP D SPT(c)	c _u =<12/<12/<12 N=4					- - -	
	-								(5.10)	
	8.20-8.30 8.20	20	D HP	c _u =<12/<12/<12	Window run 111mm dia (70% rec)				- - -	
	8.60-8.70 8.60	21	D HP	c _u =25/<12/<12					- - -	
L				l	V	<u>ı </u>				

	Boring Pr	ogress and	Water Ob	servations				C_{α}	norol	Remarks		
Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Kemarks		
Dute	Time	Depth	Depth	(mm)	Depth	moni	toring stand	dnines insta	lled as sho	own Response zo	nes are 1 00m to 5	00m
						monitoring standpipes installed as shown. Response zones are 1.00m to 5.00m and 6.00m to 18.00m. 5. SPT hammer EQU083-2014 ($E_r = 63.49\%$) used.						JOOHI
						A	All dimension	ons in metre	S	Scale:	1:25	
 Method Used:		sampling y Cored	+ Plant Used: Comacchio G			205	Drilled By:	DW	Logged By:	AASmith + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:13 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Contract:						Client:				Bo	rehole:	
		Me	troWest						Arup			BH1
Contract Ref			Start:	15.09.15	Grou	nd Level:			National Grid Co-ordinate:	She	eet:	
7	30	673	End:	18.09.15		8.09			E:347545.7 N:176344.	4	3	of 7
Dar-41-		Samples	s & Testing	Mecha	nical	Backfill & Backfill whentation	er				Depth	Material
Depth (m)	No	Туре	Results	TCR SCR	RQD (%)	Sackf Instruction	Water		Description of Strata		(Thick ness)	Graphic Legend
9.00-9.60	47	U	13 blows	1	(, *)			Very	soft bluish grey CLAY with ra	re rootle	ets	
			0% recovery					(<lr< td=""><td>nm diameter). atum copied from 5.40m from previo</td><td>us sheet,</td><td>, l</td><td></td></lr<>	nm diameter). atum copied from 5.40m from previo	us sheet,	, l	
								,		ĺ	´ -	
											[
											-	
9.70-9.80	22	D		Window r 111mm d							+	
				(75% red							[
-											-	
10.10-10.20	23	D									ŀ	
											[
10.40-10.50	24	D							at 10 10m alightly gilty alove hand		10.50	
10.40-10.30		SPT(c)	N=3	 				Very	at 10.40m slightly silty clay band. soft bluish grey slightly sandy Cuent thin laminae of fine to medium	LAY w	10.50	
								frequ	uent thin laminae of fine to medium	grey san	ıd.	
											-	
											<u> </u>	
11.00 11.00	25	D HP	a –5								Ī	
11.00		ПР	$c_u=5$	Window r 111mm d	un lia		>				-	
				(70% red							<u> </u>	
11.40	26	D	_								[
11.50		HP	$c_u=5$		M						-	
11.70-12.00	27	D									t	
											[
12.00-12.45	6	SPT(c)	N=1	*							-	
12.00		HP	$c_u=5$								į	
											1,000	
											(3.80)	
12.50	28	D				₩調					[
				Window r							-	
12.80		HP	$c_u=5$	111mm d (70% red	na c)						-	
12.90	29	D				・						
13.00		HP	$c_u=5$								-	
13.20	30	D									ŀ	
13.20		HP	$c_u=15$								[
				<u> </u>								<u></u>

E	13.20		HP	С	c _u =15								-		
	Date	Boring	Progress		Water Ob	servations Borehole Diameter	Water			Ge	neral	Remarks			
	Buto	Time	Dej	pth	Depth	(mm)	Depth								
	Method Used:	Dynan Rot	nic samp	oling +	Plan Used		acchio GE	-11	All dimens Drilled By:	ions in metre	es Logged By:	Scale: AASmith + BSaimen	1:25 Checked By:		AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:13 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Contract:						Client:				Boreh	ole:	
		Me	etroWest						Arup			BH1
Contract Ref	:		Start:	15.09.15	Ground	l Level:			National Grid Co-ordinate:	Sheet:		
7	730	673	End:	18.09.15		8.09			E:347545.7 N:17634	14.4	4	of 7
D 4		Samples	s & Testing	Mecha	nical Lo	g = 1.ig	er				Depth	
Depth (m)	No	71	Results	Mecha TCR SCR (%) (%)	RQD 1 (%) (m	Backfi Instr menta	Water		Description of Strata		(Thick ness)	Graphic Legend
13.50-14.10	48	U	32 blows 100% recovery	1				frequ	y soft bluish grey slightly sandy uent thin laminae of fine to mediu	ım grey sand.	-	
-								(stra	atum copied from 10.50m from pr	revious sheet)	[
-											-	
-											-	
14.10-14.55	7	SPT(c)	N=6	Window 111mm							14.30	
-				(60% re				Soft	bluish grey slightly sandy sional thin laminae of fine to med	CLAY with	14.30	<u> </u>
14.40	21	HP	$c_u=38$					occa	sional thin laminae of fine to med	dium sand.	[
14.50-14.70	31	D									(0.70)	
14.70		HP	$c_u=38$									
14.90-15.00	32	D									15.00	
14.90 - 15.00-15.45		HP SPT(c)	c _u =30 N=5	 				Soft	bluish grey silty CLAY with rare	e brown peat.	13.00	<u>× ×</u>
-	0	31 1(0)	11-3								-	××
-							<				-	××
- 15.50											[xx
15.50 15.60	33	D HP	c _u =30	Window							-	xx
•			-u	111mm	dia						<u> </u>	
15.90-16.05	34	D		(95% re	(6)						(1.95)	x
- 16.05-16.50		D										
. 16.10	33	HP	$c_u = 30$								[
16.20		HP	$c_u^{u}=38$								-	- X
•											-	
16.50-16.95	9	SPI(c)	N=6								-	<u> </u>
- -											ţ	<u>* </u>
16.80-16.95 16.90	36	D HP	c _u =20								16.95	x
16.95-17.25	37	D	C _u -20					Blui	sh grey gravelly very clayey SA to coarse. Gravel is subrounded	ND. Sand is	(0.30)	
-				Window					e sandstone and brown sandstone		17.25	- -
- 17.25-17.50	38	D		111mm ((60% re				Red	dish brown sandy clayey GRAVI ble content. Sand is fine to coar	EL with a low	-	10
17.50 17.00	10	CDT(.)	N=-(5+					fine	to coarse white and grey sandst sub angular to subrounded sandst	one. Cobbles	(0.40)	۵. <i>۵.</i> ۵.
17.50-17.88 17.50-17.65	39	SPT(c) D	N=65*						_		17.65	<u> </u>
- 17.65-17.95 -	40	D						Sano	n reddish brown gravelly slightly d is fine to medium. Gravel is ro	sandy CLAY. bunded fine to	(0.30)	- <u>^</u>
-								coar	se white sandstone.		17.95	<u></u>
	l			J		<u> </u>		1				1

	Boring Pr	rogress and	Water Ob	servations				<i>C</i> -	1	D 1		
Date	Time	Borehole	U	Borehole Diameter	Water			Ge	nerai	Remarks		
		Depth	Depth	(mm)	Depth							
							All dimens	ions in metre	es	Scale:	1:25	
Method Used		sampling -	+ Plan		cchio GEA	205	Drilled By:	DW	Logged By:	AASmith + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05 GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST GPJ - v8 05 | 21/01/16 - 15:13 | IF. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

Contract:							Cli	ent:						Boreho	le:		
		Me	troW	est								Arup					BH1
Contract Ref	:			Start:	15.09	0.15	Grou	nd Le	evel:			National Grid	Co-ordinate:		Sheet:		
7	300	673		End:	18.09				8.09			E:34754	5.7 N:17	6344.4		5	of 7
Depth (m)	No	Samples Type	Res		TCR	Mecha SCR (%)	nical RQD (%)	Log If (mm)	Backfill & Instru- mentation	Water		Des	cription of St	rata		Depth (Thick ness)	Material Graphic Legend
17.95-18.30 18.00 18.20 18.30-19.80		D HP HP	$c_{u} = c_{u}$		Win 11	ndow in the latest term of the l	run lia	()			with	y stiff reddish occasional 1 emely weak mu ttum copied fro	fragments of dstone	fine to m	nedium	- - - -	
18.80-19.10		D D			20	0	0				 rotai	between 18.80 y drilling and	Om and 20.10 recovered non	m core affect intact.	eted by	-	
19.80-20.40 19.80 20.10-20.40	44	D D			80	40	0									-(3.95)	
20.40-21.90	11	SPT(c)	N=(66*	0	0	0										
- 21.90-22.27 - -	12	SPT(c)	N=0	68*		\	•				Bore	chole terminate	d at 21.90m d	epth.		21.90	

		Boring Pr	ogress and	Water Ob	servations				Ca	noro1	Remarks		
ſ	Date	Time	Borehole	U	Borehole Diameter	Water			Ge	merai	Remarks		
· [Dute	1 11110	Depth	Depth	(mm)	Depth							
Γ													
-													
-													
-													
-													
١.													
							A	All dimension	ons in metre	es	Scale:	1:25	
	Method Dynamic sampling + Plant Used: Comacchi					cchio GEC	205	Drilled By:	DW	Logged By:	AASmith + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:13 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

BOREHOLE LOG

MetroWest Arup		
MetroWest Arup		BHZ
Contract Ref: Start: 09.09.15 Ground Level: National Grid Co-ordinate:	Sheet:	
730673 End: 14.09.15 7.77 E:347705.7 N:17628	5.7	1 of 18

	730	673	End:	14.09.15	5	7	7.77		E:347705.7 N:176285.7	1	of 18
		Sample	s & Testing	Mech	nanical	Log	8 . u	L		Denth	Material
Depth (m)	No		Results	TCR SCF (%) (%)		If (mm)	Backfull Instru- mentati	Water	Description of Strata	(Thick ness)	
0.40	1	В							MADE GROUND: Black slightly silty slightly sandy GRAVEL. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse limestone and clinker.	- (1.00)	
0.40	1	B								(1.00)	\bowtie
0.60	2	ES								-	
0.80	3	В								1.00	\bowtie
1.00	4 5	ES D				•			MADE GROUND: Brown slightly sandy gravelly CLAY with medium cobble content. Sand is fine	1.20	
1.20 1.25-1.70	1	HP SPT	c _u =125/112/87 N=6	1		•			to coarse. Gravel is subangular to subrounded fine to coarse limestone. Cobbles are subangular limestone.	-	
1.50-1.64 1.50 1.50	5	D ES HP	c _u =75/62/100			•			Stiff light greyish brown mottled orange slightly sandy CLAY with occasional black organic specks.	- -	
1.70 1.75-1.90	7	HP D	$c_u = 160/125/150$	Window 101mm (100%)	dia				at 1.75m mottling is orangish red.	(1.20)	
1.92-2.32	8	U				•				- - -	
			21.11	<u> </u>						2.40	
2.40-3.00	8	U _(UT100)	31 blows 75% recovery						Stiff light bluish grey mottled orange slightly sandy CLAY.	-	
2.70	9	ES							at 2.70m woody stem from plant along edge of sample (may have fell in).	- - -	
3.00-3.45 3.00-3.10 3.10	2 10	SPT D HP	N=6 c _u =87/75/87	Window 101mm (95% r	dia	•				(1.30)	
3.40-3.70	11	В				•				-	
-						•			CoA light bloids are south I south I	3.70	
						•			Soft light bluish grey mottled orangish brown slightly sandy CLAY.	-	
3.90-4.50	55	U _(UT100)	28 blows 75% recovery	│		•				-	
3.90 4.00-4.15	12	V D	$c_u=38$	Window 101mm (66% r	dia	•				(1.00)	
4.40-4.60	13	ES		`		•				-	

	Boring Pr	ogress and	Wat	er Ob	servations		ı
Date	Time	Borehole	Ca	sing	Borehole Diameter	Water	
Date	THIC	Depth	De	pth	(mm)	Depth	lt
07/09/15	17:30	5.40	N	one	116	0.00	H
08/09/15	16:30	11.80	10	.28	116	2.00	H
09/09/15	08:00	11.60	11	.62	116	2.20	H
09/09/15	17:00	18.50	18	.54	116	0.10	H
10/09/15	08:00	18.50	18	.54	116	0.30	H
10/09/15	15:00	19.70	19	.44	116	1.10	H
11/09/15	08:00	21.40	19	.44	116	1.20	ŀ
11/09/15	17:00	23.60	21	.40	116	0.10	Ц
Method Used:	Dynamic Rotar	sampling y Cored	+	Plant Used		cchio GEO)

Comacchio GEO 205

General Remarks

- 1. Location CAT scanned prior to excavation. 2. Hand dug inspection pit to 1.20m depth.
- 3. Borehole located in the 6 foot.
- 4. Dynamic sampling from ground level to 18.50m. Rotary coring of soft rock using T6-116 barrel with PCD bit and water flush between 18.50m to 29.70m.
 5. 50mm diameter HDPE gas and groundwater monitoring standpipes installed as
- shown. Response zone is 0.80m to 20.00m

1:25 All dimensions in metres IFoster + RLynes + BSaimen Drilled Checked Logged DW By: By: By:

GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:14 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

BOREHOLE LOG

											'					
Contract:							Clie	ent:						Boreho	le:	
		Μe	etroW	est							Arup					BH2
Contract Ref	0,10,110					5 Grou	nd Le	vel:			National Grid Co	o-ordinate:		Sheet:		
7	730673 End: 14.09.15					5	7	7.77			E:347705	.7 N:176	285.7		2	of 18
Depth (m)	No	Sample: Type	s & Testi Resi		Mec TCR SC (%) (%		If (mm)		Water		Descri	ption of Str	ata		Depth (Thick ness)	Material Graphic Legend
4.50-4.95	3	SPT	N=	=3			ŀ			Soft	t light bluish gr		orangish	brown	_	

		Sample	s & Testing	Mechanical	Log 🚆 ,	<u></u>	H		Depth	Material
Depth (m)	No		Results	Mechanical TCR SCR RQD (%) (%) (%)	If (mm)	mentat	Water	Description of Strata	(Thick ness)	Graphic Legend
4.50-4.95	3	SPT	N=3					Soft light bluish grey mottled orangish brown		
ļ								slightly sandy CLAY. (stratum copied from 3.70m from previous sheet)	4.70	
4.70	56	$U_{(UT100)}$	26 blows 100% recovery					\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-	<u> </u>
-			100% recovery	Window run				decaying roots).	4.90	<u> </u>
-				101mm dia (66% rec)				Dark brown spongy pseudo-fibrous PEAT.	_	<u></u>
-				(0070100)				Very soft light grey slightly sandy CLAY with occasional plant remains.	-	
-						::		occasional plant femalis.	-	
-						∄			-	
5.40	15	ES		<u> </u>		₽			-	
3.40	13	ES		Ţ		∷			-	
5.60-6.00	16	D							-	
3.00-0.00	10	"		Window run 101mm dia					-	
+				1				<u>.</u>	(2.00)	
†									(2.00)	
6.00-6.45	4	SPT _(NR)	N=2	- 					-	
1 0.00 0.15	'	SI I (NR)	11 2						-	<u></u>
-									-	
· †							4		-	
6.40-6.50	17	D							-	
6.50-6.80	18	ES		Window run					-	
Ī				101mm dia					-	
ļ .				(80% rec)					-	
6.80-6.90	19	D							6.90	
6.80	20	HP	$c_u=13$					Grey silty CLAY with occasional brown plant		<u>x </u>
6.90-7.30	20	В						remains.		<u></u>
[[
Ļ										<u> </u>
7.30-7.90	59	U _(UT100)	18 blows	1					_	<u>x x</u>
			80% recovery						_	<u>×</u>
-						:: :			-	× _ ×
-						∷ :			(1.60)	<u>x </u>
}									ļ .	
7.00.025	_ ا	CDT	N. 0						-	<u>* - * - * </u>
7.90-8.35 7.90-8.50	5 21	SPT D	N=2	Window run					-	<u>x </u>
1.50 0.50	21			101mm dia (50% rec)					-	
-				1					-	
`}									-	<u> </u>
}					::				0.50	
8.50-8.80	22	D						Soft grey slightly sandy CLAY with occasional	8.50	
- 5.50-0.60	122	້						thin laminae of grey fine to medium sand and some	-	
†				Ţ				plant remains.	<u> </u>	
8.80-9.40	60	U _(UT100)	15 blows	Window run	::				-	
		- (01100)	100% recovery	101mm dia (60% rec)					-	
				(00/0100)				I .		

	Boring Pr	ogress and	Water Ob	servations				Ca	n aral	Damarlia		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	(CDT				Remarks		
14/09/15 14/09/15		23.60 28.20	21.40 21.40	116 116	0.60 1.90	6. SP1	hammer E	QU083-201	$4 (E_{\rm r} = 63)$.49%) used.		
							All dimensi	ons in metre	es	Scale:	1:25	
Method Used:		sampling	+ Plan		cchio GEO	205	Drilled By:	DW	Logged By:	IFoster + RLynes +	Checked By:	AGS

GINT LIBRARY V8 05 GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST GPJ - v8 05 | 21/01/16 - 15:14 | IF. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

100												ים			<i>/</i> L L		
Contract:							Clien	ıt:						I	Boreho	le:	
		Me	etroW	'est							Aru	p					BH2
Contract Ref	:			Start:	09.09.15	Grou	nd Lev	el:			National G	rid Co-ord	inate:	5	Sheet:		
7	730	673		End:	14.09.15		7.	.77			E:347	705.7 N	N:1762	285.7		3	of 18
		Sample	s & Test	ing	Mecha	anical	Log 🥞	ıon	:							Depth	Material
Depth (m)	No	71		sults	TCR SCR (%) (%)	RQD (%)	Log 8 Racktill 8 (mm)	Instrumentat	Water			Description				(Thick ness)	Graphic Legend
8.90 9.40-9.85	6	HP SPT		=15 =2						thin plan	grey slight laminae of tremains.	grey fine to	o mediun	n sand and	some	- - -(1.70)	
9.80-10.00	23	D	1,	_	Window 101mm (60% re	dia										- - -	
9.90 10.00-10.20	24	HP D	c _u =	<15						G	1	C1	DE A T	ia.		10.20	
10.20-10.30		D U _(UT100)		lows	*					\banc Soft	ngy pseudo ling of soft g grey slight congy pseud	grey clay. ly sandy C	CLAY wi	ith rare bar	nding	(0.80)	
10.90-11.35 10.90 11.00-11.20		SPT HP D		=16 <10	Window 101mm (80% re	dia				Soft	grey slightl	y sandy Cl	LAY.			11.10	
11.30	2.7	НР	c _u =2	25/30						Grey	y silty SANI	D. Sand is	fine to n	nedium.		11.30	
11.50-12.60 11.60-12.40		B U _(UT100)	54 b 100% r	lows												- - - (1.30)	× × × × × × ×
12.40-12.85	8	SPT	N.	=6	Window	FUD										- - - -	× × × × × × × × × × × ×
12.70-12.80	28	D			101mm (80% re	dia				Soft	grey slightl	y sandy Cl	LAY.			12.60	*
12.70		HP		<12												-	
12.90	20	HP	c _u =	<12						Firm	n fibrous slig	ghtly sandy	y PEAT.			13.00	<u> </u>
- 13.05	29	D											,			13.25	<u> </u>
13.30 13.30-13.90	30 64	D U _(UT100)	24 b	lows	Window 101mm (50% re	dia				Desc	cription on i	next sheet				-(0.35)	

	Boring Pr	ogress and	Water Ob	servations				Ca	n aral	Damarlia		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	nerai	Remarks		
							All dimension	ons in metre	S	Scale:	1:25	
Method Used:	Dynamic Rotai	sampling ry Cored	+ Plan Used		cchio GEC	205	Drilled By:	DW	Logged By:	IFoster + RLynes + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:14 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

On								BOREHO	JLE	L	UG
Contract:						Client:			Borehole:		,
		Me	etroWest					Arup			BH2
Contract Ref	:		Start:	09.09.15	Groun	d Level:		National Grid Co-ordinate:	Sheet:		
7	30	673	End:	14.09.15		7.77		E:347705.7 N:176285.7		4	of 18
		Samples	s & Testing	Mecha	nical L	og 🚆 -i ii	er		D ₂	epth	Material
Depth (m)	No	Туре	Results	Mecha TCR SCR (%) (%)	RQD (%) (1	Backfi Instr mentat	Water	Description of Strata	n	hick ess)	Graphic Legend
13.50	31	D	75% recovery					Soft grey slightly sandy CLAY with occan decomposed plant matter (peat). Sand is f		3.60	
- 13.60		HP	$c_u = <12$					medium.	/-	ļ	
13.80		HP	$c_{0} = < 12$					(stratum copied from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m from 13.25m from previous soft grey slightly sandy CLAY with from 13.25m fro	$\frac{(heet)}{(0)}$	0.50)	
13.90-14.35	9	SPT	N=7					decomposed roots/rootlets.	quent		<u> </u>
		_		Window r					14	4.10	
14.10-15.20	32	В		101mm d (50% red				Grey silty SAND. Sand is fine to medium.	-		×··×
-									ŀ		×××
=									-		××
-										10)	×××
_									[(1	.10)	×
=				, *				C 14 00 4 15 00	-		×
-								from 14.80m to 15.00m no recovery.	-		× ×
_ 15.00-15.45	10	SPT	N=24	 					-		××
-									1:	5.20	×
-								Soft grey slightly sandy CLAY. Sand is fine			
15.30-15.50 15.30	33	D HP	$c_{0} = < 12$						[(0	0.35)	[-
-		111	C _u -\12						- 15	5.55	
- 15.55-16.10	34	В						Grey silty SAND. Sand is fine to medium.	-		×××
-				101mm d	lia				100	0.55)	×···×
_				(90% red	c)				[(0	.55)	×××
_											×
16.10-16.20	25	D			M			Soft grey slightly sandy CLAY.		6.10	<u> </u>
16.15	33	HP	$c_{u} = < 12$					Grey silty slightly SAND. Sand is fine to me		6.20 6.30	× ×
16.30-16.50	36	D						Soft grey slightly sandy CLAY.	10	7.50	
-				•					[
16.50-16.95	11	SPT	N=23						-		
-									-(0	0.80)	
16.80-17.00	37	D						at 16.80m and 16.90m with <50mm int	erheds		
- 10.00 17.00	3,							of grey silty sand.	F		[-
17.00		HP	$c_{u} = < 12$	Window r	un					7.10	
- 17.15-17.35	38	D		101mm d (85% red	lia			Firm brown amorphous sandy PEAT with	shelly	0.30)	14
•				(03%) 180	-)			fragments. Becoming dark brown towards ba between 17.25m and 17.35m fibrous woo	od -		* <u>*</u> '.*'
l 17.40-17.60	40	D						Soft black with grey mottling slightly	1.	<u>/.40</u>	77.77.
17.50	.0	HP	$c_{u}=20$					CLAY with frequent fibrous organic matter.	· · ·	7.60	<u> </u>
17.60-17.75	39	В	<u>.</u>						vel is 1	7.70	% ∵ ×
				XV: 1				subrounded to rounded fine to coarse limitand siltstone.			0.0.0
17.80-18.20 17.80-17.90	12	SPT(c)	N=61*	Window r 101mm d	lia			Description on next sheet	——/ <u> 1</u> 7	7.90	
17.00-17.90	71	٦		(100% re		[:•: ⊟• : •		<u> </u>	118	3.00	<u></u> o

	Boring Pr	ogress and	Water Ob	servations				Ca	noro1	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth				Herai	Kemarks		
							All dimensi	ons in metre	es	Scale:	1:25	
Method Used:		sampling or Cored	+ Plan Used		cchio GEO	205	Drilled By:	DW	Logged By:	IFoster + RLynes + RSeimon	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:14 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Contract:							Client:				Boreho	le:	
		Me	troW							Arup			BH2
Contract Ref	:			Start:	09.09.15	Groun	nd Level:			National Grid Co-ordinate:	Sheet:		
7	300	673		End:	14.09.15		7.77			E:347705.7 N:176285.7		5	of 18
Depth (m)	No	Samples Type	& Testi Resi		Mecha	nical I	Backfill & Bornentation	Water		Description of Strata		Depth (Thick ness)	Material Graphic Legend
17.90-18.00 18.00-18.15 18.15-18.50	42 43	D D D	rest		Window 101mm (100% re	run lia	(mm) \(\text{\text{\text{mm}}} \)		Grav sand Grey	wn sandy GRAVEL. Sand is fine to wel is subangular to subrounded fine to lstone and siltstone. y and yellowish brown sandy CLAY. Sto coarse.	coarse	-(0.35)	0-0
18.50-19.20					13 13	0			coar coar Grey Sand rour Extr	y very clayey gravelly SAND. Sand is se. Gravel is subangular to rounded se sandstone and limestone. yish brown very clayey very sandy GR. d is fine to coarse. Gravel is subangulated fine to coarse sandstone and siltstonemely weak reddish brown MUDS ables into fine to medium angular lithestremely weak mudstone up to 5mm.	AVEL. ular to te.	18.50	
19.20-19.70 19.20-19.65		В			100 0	0			Extr crur litho 5mr	remely weak reddish brown MUDS ables into fine to medium gravel sized a prelicts of extremely weak mudstone	ingular up to	- - - -	
19.70-21.40 19.70-20.15 19.70-21.20	13	SPT(c) B	N=	29	88 0				mud	le stratum. between 19.65m and 19.70m extremely istone crumbles into fine to medium d lithorelicts.	y weak gravel	(3.40)	
21.40-22.10 21.40-21.69 21.90-22.10	14	SPT(c)	N=1	11*	83 36	36	A		Des	cription on next sheet		21.90	
22.10-23.60		Co			83 57		40 100 190		Desi	л фион он нем ѕпеес		- - - -	

٠.													
		Boring Pr	ogress and	Water Ob	servations				Ca	mara1	Damarla		
	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	merai	Remarks		
	Dute	1 11110	Depth	Depth	(mm)	Depth							
							1	All dimension	ons in metre	es	Scale:	1:25	
	Method Used:		sampling	+ Plar Use		cchio GEC	205	Drilled By:	DW	Logged By:	IFoster + RLynes + RSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:14 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk,

BOREHOLE LOG

0											DONLING		.00
Contract:								Cl	ient:		Во	rehole:	
MetroWest											Arup		BH2
Contract Ref: Start: (9.15	Gro	und L	evel:		National Grid Co-ordinate: She	eet:	
730673 End:				14.09.15				7.77		E:347705.7 N:176285.7	6	of 18	
		Samples	s & Testi	ing	1	Mecha	anical	Log	% _ uo	r		Denth	Material
Depth (m)	No	Туре	Res	ults	TCR (%)	SCR (%)	RQI (%)	If (mm	Backfill & Instru-	Water	Description of Strata	(Thick ness)	Graphic Legend
- 23.15-23.30	48	CS			83	57	31	40 100 190			Very weak reddish brown MUDSTONE crumb into angular fine to coarse gravel sized lithoreli of extremely weak mudstone when handle Occasional greenish grey mottling of siltstor Fracture set 1 subhorizontal closely to close spaced undulating rough partly open to opclean/smears of red clay up to 25mm. (stratum copied from 21.90m from previous sheet Extremely weak reddish brown MUDSTON crumbles into angular fine to coarse gravel size extremely weak mudstone up to 15mm.	ects ed ne elly een - 23.25	
23.60-25.10 23.60-23.88		SPT(c)	N=1	20*			1				Extremely weak to very weak reddish brown MUDSTONE crumbles into angular fine to coar gravel sized extremely to very weak lithorelicts reddish brown mudstone. Fracture set subhorizontal closely to medium space undulating rough open clean/smears of red clay to 0.25mm.	wn rse of 1	
24.40-24.70	49	CS			87	80	33	111 180 420				-(2.65)	
25.10-25.37 25.30-26.80		SPT(c)	N=1	30*	67	40	20					-	
26.10-26.30	50	CS									Weak reddish brown silty MUDSTONE w occasional greenish grey patches of siltstorecovered non intact as cobble and gravel of we	ne $\lfloor (0.35) \rfloor$	
26.60-28.10 26.60-26.81	17	SPT(c)	N=1	43*	67/	(60)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NI 100 160			mudstone up to 70mm. Description on next sheet	26.60	

		Boring Pr	ogress and	Water Ob	servations				Ca	norol	Remarks		
]	Date	Time	Borehole	U	Borehole Diameter	Water			Ge	nerai	Kemarks		
	2000		Depth	Depth	(mm)	Depth							
i													
3													
,													
3													
1							A	All dimensi	ons in metre	S	Scale:	1:25	
	Method Used:	Dynamic Rotai	sampling y Cored	+ Plan Used		cchio GEC	205	Drilled By:	DW	Logged By:	IFoster + RLynes + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:14 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

BOREHOLE LOG

										BOKLII	OL		.UG
						Cli	ient:				Boreho	ole:	
	Me	etroWest	.							Arup			BH2
ef:		Star	rt: 09.0	9.15	Grou	and L	evel:			National Grid Co-ordinate:	Sheet:		
730	673	Enc	d: 14.0	9.15			7.77			E:347705.7 N:176285.7		7	of 18
No			TCR	Mecha SCR	anical RQD	Log	ackfill & Instru- entation	Water		Description of Strata	•	(Thick	Material Graphic Legend
58 51 70 60 18	CS	N=150*	67	60	40	NI 100			crui of sub und (stra	mbles into angular fine to medium litextremely weak mudstone. Fracture horizontal extremely closely to closely lulating rough open clean/smears of redicatum copied from 26.60m from previous. between 28.10m and 28.25m mercia mup zone II becomes mercia mudstore I, mudstone gains strength and it lik.	horelicts e set 1 y spaced clay. ss sheet) mudstone e group becomes	(2.30)	
	CS SPT(c)	N=214*			32	NI 70 130			gree Franclos mod Extr crur extr with 10n	enish grey patches up to 15mm of cures are subhorizontal extremely cleely spaced undulating rough of derately wide infilled with red clay dium fragments of mudstone. The remely weak reddish brown MUE mbles into angular fine to coarse lithous remely weak red mudstone. Detween 29.35m and 29.40m firm hoccasional lithorelicts of mudstonem.	siltstone. osely to pen to y/fine to STONE relicts of	-(0.45) - 29.35 -(0.35) - 29.70	
	No No No 1820 52	ef: 730673 Sample No Type Sample No Type Sample S	Star T30673 Enc T30673 Enc Samples & Testing No Type Results R	Samples & Testing TCR (%)	Start: 09.09.15 14.09.15	Start:	## Start:	Start:	Start: O9.09.15 Ground Level:	Start: O9.09.15 Ground Level:	Client: Arup	Client: Arup Boreho	## Samples & Testing Mechanical Log Mechanical Log

Boring Progress and Water Observations General Remarks Borehole Diameter (mm) Borehole Casing Water Date Time Depth Depth Depth 1:25 All dimensions in metres Scale: Dynamic sampling + Rotary Cored Logged By: IFoster + RLynes + BSaimen Drilled Checked Method Plant Used: Used: Comacchio GEO 205 By: DW By:

GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST GPJ - v8 05 | 21/01/16 - 15:14 | IF.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council

6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex D2 Avon

Road Bridge and Pill Station

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Contract Reference: 730673

KEY TO EXPLORATORY HOLE LOGS - SUMMARY OF ABBREVIATIONS

SAMPLING

Sample type codes

В = Bulk disturbed sample.

Core sample. C =

CS Core sample taken from rotary core for lab testing. =

Small disturbed sample. D

Small disturbed sample originating from SPT test. **DSPT**

= Soil sample for environmental testing. ES ExU Extruded undisturbed sample remnants.

Undisturbed driven tube sample - Number of blows indicated. % recovery reported.

Undisturbed sample detail codes

Undisturbed sample UT100 $U_{(UT100)}$

IN-SITU TESTING

 $SP\underline{T}_{(c)}$ Standard Penetration Test using a solid 60 degree cone.

Standard Penetration Test using split spoon sampler. (SPT_(NR) indicates 'No Sample Recovery'). * denotes extrapolated N value. NP denotes 'No Penetration'. SPT'

=

HP = Hand Penetrometer Test. Value given as shear strength c₀, in kPa. Field Vane Test. Peak value (c_n) & Residual value (c_r) , given as shear strength in kPa.

ROTARY DRILLING INFORMATION

W Water flush returns (%) Total core recovery (%) **TCR** = Solid core recovery (%) SCR Rock quality designations (%) RQD

Fracture spacing (mm).

In the fracture column (i) denotes discontinuity is infilled (refer to Fracture Table for details).

Where variable the minimum - average - maximum spacing may be quoted.

'NI' denotes non-intact core. 'NA' denotes not applicable.

All lengths used to determine rock core mechanical properties taken along the centre line of the core.

Obvious induced fractures have been ignored.

The assessment of solid core is based on lengths that show a full diameter and not necessarily

a full circumference.

AZCL = Assessed zone of core loss.

ADDITIONAL NOTES

- 1. All soil and rock descriptions and legends in general accordance with BS EN ISO 14688-1, 14688-2, 14689-1, and BS5930:1999 including Amendment 2 (2010).
- 2. Material types divided by a broken line (- -) indicates an unclear boundary.
- 3. The data on any sheet within the report showing the AGS icon is available in the AGS format.

GINT_LIBRARY V8 05.GLB!Gr@ctext G - LEGEND - 1 OF 2 | 730673_METROWEST.GPJ - v8 05 | 29/01/16 - 15:30 | IF.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email:admin@soils.co.uk

Contract Reference: 730673

KEY TO EXPLORATORY HOLE LOGS - SUMMARY OF GRAPHIC SYMBOLS

WATER COLUMN SYMBOLS

First water strike, second water strike etc.

Standing water level following first strike, standing water level following second strike etc.

Seepage.

Standing water level recorded at documented date.

MATERIAL GRAPHIC LEGENDS

CLAY

Clayey gravelly SAND

Gravelly clayey SAND

Conglomerate

Clayey sandy GRAVEL

Sandy clayey GRAVEL

Silty gravelly CLAY

MADE GROUND

Mudstone

PEAT

Possible MADE GROUND

Sandstone

Sandy CLAY

Sandy silty CLAY

Sandy GRAVEL

Gravelly sandy CLAY

Sandy gravelly CLAY

Siltstone

Sandy PEAT

Silty CLAY

INSTRUMENTATION SYMBOLS

Asphalt

Backfill

Bentonite seal

Concrete

Gravel filter

Stopcock cover

Flush cover

Plain pipe

Slotted pipe

INSPECTION PIT LOG

Contract:								Client:			Trial Pi	it:	
		Me	troW						Arup				BH3
Contract Re	f:			Start:	17.0	9.15	Groun	nd Level:	National Grid Co-ordinate:		Sheet:		
,	7300	573		End:	17.0	9.15						1	of 1
	<u> </u>	nd In-si			Water	Backfill			Description of Strata			(Thick	Material Graphic Legend
Depth - 0.20 - 0.20-0.40	No 1 2	ESS B B B B B B B B B B B B B B B B B B	Res	sults	We	Bac Bac	POS grave suba	SSIBLE MADE GRO velly SAND with frec angular fine to coarse	ek tarmac 50% aggregate con DUND: Dark reddish brown quent rootlets. Sand is fine to brick and sandstone.	n slightly silt to coarse. Gr	y very avel is	0.10 - (0.40) - (0.50	Legend
-													

General Remarks

- 1. Location CAT and Genny scanned prior to excavation.
- 2. Inspection pit abandoned due to services, backfilled with arisings and reinstated with asphalt.

All dimensions in metres Scale: 1:25

Method Used: Hand dug Plant Used: Hand tools Logged By: AASmith By: AGS

BOREHOLE LOG

Contract:				Client:		Borehole	e:		
MetroW	est				Arup			BE	13B
Contract Ref:	Start:	17.09.15	Groun	d Level:	National Grid Co-ordinate:	Sheet:			
730673	End:	28.09.15		11.45	E:352102.0 N:176267.5		1	of	9

7	7300	673	End:	28.09.15	11	.45		E:352102.0 N:176267.5	1	of 9
		Samples	s & Testing	Mechanica	lLog ⊗	. uc			Donth	Material
Depth		I	, a resume		T vo	ati j	Water	Description of Strata	(Thick	
(m)	No	Туре	Results	TCR SCR RQI	기 II Iğ	Inst	`≋	Description of Strata	ness)	Legend
(111)	110	Турс	resures	(%) (%) (%)	(mm)	<u> </u>			ness)	Logona
L						JШ		MADE GROUND: ASPHALT.	0.10	$\otimes\!$
						108080		MADE GROUND: Black to grey clayey gravelly		KXXXX
†					12			SAND. Sand is fine to coarse. Gravel is	0.30	$\otimes \otimes \otimes$
0.30	1	ES			1 160	関節	ŀ	subangular to subrounded fine to coarse brick, r	0.50	(*, ; ; ;
<u> </u>					£			limestone, sandstone and flint.	-	
0.40-0.60	2	В						Soft dark brownish red slightly sandy slightly	(0.40)	<u> </u>
								gravelly CLAY. Sand is fine to coarse. Gravel is		<u>ت : </u>
ſ								subrounded fine to coarse brick and sandstone.	0.70	<u> </u>
t								Firm reddish brown sandy CLAY. Sand is fine to	0.70	<u> </u>
+					•••	٠.		coarse.	-	ᆣᆣᅼ
0.85		V	$c_u=50$					course.	Ļ	
_0.85		V	$c_r=16$:•	∖∐ઃા			L	
1.00-1.10	3	В				ĭH∷H				
Ī						::::::::::::::::::::::::::::::::::::::				
1.20	4	ES		<u> </u>	┨ [::	H:::1			-	<u></u>
1.20	4	V	$c_u=66$	Window run	::	田品			(1.30)	
1.20		ľv	$c_u=00$ $c_r=22$	Window run 101mm dia - (100% rec		ŀ∷H			(1.50)	
1.40-1.50	3	ΙĎ	c_r 22	l v		⊞:H				- <u></u>
1.40-1.50	,	"		A	7 👯	∄∷ી			[
†					[:	∄:: <u>:</u>			ŀ	
+					::	出品			-	
1						∄ઃ¦			-	
						田出			L	
1.90	5	$U_{(UT100)}$	39 blows		1 ::	:::⊞			2.00	
F	7	(01100)	75% recovery			⊞∷ :	l	Stiff light reddish brown slightly sandy CLAY.		=:=:
2.00-2.20	1	D	_	l l	***	旧∵		Sand is fine.	-	<u> </u>
2.10-2.55	1	SPT	N=20	Window run		H::1			-	
- 2.25		HP	$c_u = 175$	101mm dia		田村			L	
1 2.23		'''	o _u 175	(100% rec)		ːH∴H				
2.40-2.50	8	D				·B:∙1			(1.00)	- ::
2.50-2.90	9	U							(1.00)	├ <u></u> ┈┈┤
12.50 2.50		~				H::I			-	┟╤╌╌┤
-						⊞::1			-	
Ļ						泔∵			L	$\overline{\cdots}$
			· ·			∄∷				
2.90-3.00	10	D			[:	⊞∷			3.00	┝╌╌╌┤
3.00-3.45		SPT(c)	N=21		†	∄ઃી		Very stiff reddish brown slightly sandy CLAY	2.00	= := :=
1 3.00 3.13	-		11 21		::	∄∷¦		with frequent angular fine to medium fragments of	-	<u> </u>
F		_				洪計		extremely weak mudstone up to 3mm.	ŀ	┝╼╼┪
3.20-3.50	11	D		l'		∦∷ી		and the second s	L	:-::::
	Ì			Window run	:	旧∷Ⅱ			(0.80)	
1				101mm dia (100% rec)		∄ઃો				HII]
3.50		HP	$c_u = >250$	(10070160)		出記			†	<u> </u>
F 3.30		'''	C _u ->250			出:计			ŀ	<u> </u>
Į.						∄∷∄			ļ.	
L				₩	」	H:•1			3.80	
3.80-5.30				A A A	7 ::	泔∵∤		Stiff becoming very stiff reddish brown slightly		- :-::-
3.80-4.16	3	SPT(c)	N=73*	$ \ \ \ \ $		出記		sandy CLAY.	(0.30)	
-3.80-4.00	12	D		$ \ \ \ \ $		出:计		-	F	<u> </u>
4.00		HP	$c_{u} = 250$::	出・出	ļ	D	4.10	<u>-</u> -
L			=	100 7 7	_ ↑ ::	∄ઃ¦		Description on next sheet	L	
4.20-5.70				↑ ↑ ↑	90	泪∵¦				
1				$ \ \ \ \ \ $	180	∄ઃી			Γ	
t					400	# ∷ !			†	

	Boring Pr	ogress and	Water Ob	servations		П
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	
21/09/15 22/09/15 22/09/15	17:00 08:00 16:00	4.20 4.20 13.20	2.40 2.40 2.40	116 116 116	0.80 1.70 Dry	
						П

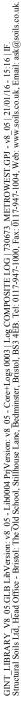
Plant Used:

Dynamic sampling + Rotary Cored

Method

Used:

General Remarks


All dimensions in metres

- Location CAT and Genny scanned prior to excavation.
 Hand dug inspection pit to 1.20m depth.
 Dynamic sampling from ground level to 3.80m. Rotary coring of soft rock using T6-116 barrel with PCD bit and water flush between 3.60m to 13.20m.
 50mm diameter HDPE gas and groundwater monitoring standpipes installed as shown. Response zone is 0.80m to 13.20m.
 SPT hammer EQU083-2014 (E_r = 63.49%) used.

Scale:

1:25

Comacchio GEO 205	Drilled By:	DW	Logged By:	AASmith + RLynes + BSaimen	Checked By:

BOREHOLE LOG

•										20112110			
Contract:							Cl	ient:		В	orehole:		
		Me	troWest							Arup		E	BH3B
Contract Ref	:		Start:	17.09	9.15	Grou	ınd L	evel:		National Grid Co-ordinate: SI	heet:		
7	730	673	End:	28.09	9.15		-	11.45		E:352102.0 N:176267.5	2	2 (of 9
		Samples	& Testing	N	Mecha	anical	Log	% %	H .		De	oth	Material
Depth (m)	No	71	Results	TCR (%)	SCR (%)	RQD (%)	If (mm)	Backfill & Instru- mentation	Water	Description of Strata	(Th	ick	Graphic Legend
4.45-4.60	13	CS		100 100 100		7 96 96	90 180 400			Extremely weak very thinly to thinly bed reddish brown MUDSTONE. Bedding fraction are subhorizontal closely to medium spatial undulating rough open moderately wide whighly weakened upper and lower fracture surfactories (stratum copied from 4.10m from previous sheet)	ures aced with ace.	1 5)	
- - 5.55-5.70	14	CS					+			Very weak very thinly bedded to thinly bed reddish brown silty MUDSTONE with occasion		55	
5.70-7.20 5.70-5.89	4	SPT(c)	N=135*		*					thin laminae of greyish green fine to co- sandstone. Bedding fractures are subhorizo closely to medium spaced undulating rough o infilled with red clay up to 2mm.	arse ntal		
6.60-6.90	15	CS		100	100	100	100 180 430		< >		-(1.3	35)	
-6.95-7.10	16	CS					1			Very weak yellow fine to medium SANDSTON	6.9 VE. 7.1		
7.20-8.00 7.20-7.40	5	SPT(c)	N=130*		*	1				Very weak very thinly to thinly bedded red brown silty MUDSTONE with rare inclusions very weak yellow fine to medium sandstone. Very weak very thinly bedded reddish brown sandstone.	dish s of 7.3	30	
- - - 7.75-7.90	17	CS		100	42	42				MUDSTONE interbedded with very w laminated yellow fine to medium sandstone.	eak (0.3	35)	
8.00-9.00	1,	CS		+	+		A			Very weak laminated reddish brown s MUDSTONE with occasional lenticular yel fine to medium sandstone inclusions.		00	
8.40-8.70	18	CS		98	98	98	120 260 310			Medium strong brownish yellow fine to consumption of SANDSTONE with occasional lenticular reduction silty mudstone (up to 10mm). Bedde fractures are subhorizontal close to medius spaced undulating rough. reduction in flush returns below 8.70m.	dish ding	35)	

		Boring Pr	ogress and	Water	Obs	ervations				C_{α}		Domonles		
	Date	Time	Borehole		ng	Borehole Diameter	Water			Ge	nerai	Remarks		
			Depth	Dept	th	(mm)	Depth							
`														
								1	All dimensi	ons in metre	es	Scale:	1:25	
	Method Used:	Dynamic Rotai	sampling ry Cored		Plant Used:		cchio GEO	205	Drilled By:	DW	Logged By:	AASmith + RLynes + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:16 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk,

BOREHOLE LOG

Op											BURER	ULI		.UG
Contract:							Cl	ient:				Boreho	ole:	
		Me	troWest								Arup]	внзв
Contract Ref	:		Star	t: 17.0	9.15	Grou	and L	evel:			National Grid Co-ordinate:	Sheet:		
7	7300	673	End	28.0	9.15			11.45	5		E:352102.0 N:176267.5		3	of 9
		Samples	& Testing		Mech	anical	Log	1 & 1- ion	ı.				Depth	Material
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	If (mm)	Backfill & Instru- mentation	Water		Description of Strata		(Thick ness)	Graphic Legend
9.00-10.20	4.0			1 1	1	↑	120						-	
9.10-9.25	19	CS					260						-	
-							310						9.35	
=							A			Ver	ry weak thinly bedded reddish brow	n silty	-	
-							160			MU	JDSTONE with occasional lenticular yewn fine to medium sandstone inclusion	llowish	(0.50)	
- 9.55-9.80	20	CS		100	76	61	180	k:H::		10n	nm). Bedding fractures are subhorizont	al close	(0.50)	
-				1 1	L	l i	210			to n	nedium spaced undulating smooth.		-	
=							<u> </u>						9.85	
-							15			Ver	y weak very thinly to thinly bedde JDSTONE interbedded with very	d silty	l l	
-							50			gree	enish grey siltstone. Bedding fractu	res are	10.10	
10.10-10.20	21	CS		↓	↓	l ↓				Sub	horizontal extremely closely spaced und	lulating [000
10.20-11.70	1			1	1	1	1	比排∷			gh open green silt/red clay.		10.30	000
_							1				ong pinkish red matrix su NGLOMERATE. Clasts are subangula:	pported [L	000
-										med	dium grey sandstone. Matrix is fine	silt and	L	000
10.50-10.85	22	CS								clay			-	000
-											no flush returns below 10.20m. ong dark brownish red matrix su	nnorted	-	000
-							25			CO	NGLOMERATE. Clasts are angi	ılar to	(1.00)	000
-							330		1	sub	angular fine to coarse sandstone and	calcite	-	000
_				100	90	63	П			grav	vel. Matrix is fine silt and clay. Fractulding fractures are subhorizontal to 10	res and	F	000
-				11						fille	ed with red silt and clay extremely clo	sely to	-	000
-										med	dium spaced undulating rough.	-	11.30	000
-								₩₩		Stro	ong dark reddish mottled creamy pink	matrix	11.30	0 0 0
-					Ш					sup	ported CONGLOMERATE. Clasts are	e gravel	f	0 0 0
- 11.45-11.55	23	CS								to c	cobble sized angular sandstone, mudsto cite. Fractures are subhorizontal ope	one and	<u> </u>	000
-				- ↓							h red silt and clay extremely close to i		Ī	000
11.70-13.20	1				1						ced undulating rough.		Ī	000
_													[000
_														000
12.00-12.10	24	CS											Ļ	000
-							15	!:H::					(1.90)	000
=							180			bou	at 12.20m medium strong grey milder larger than core barrel.	udstone	- (1.50)	000
-				'			380			Jou	nder larger than core barren.		-	000
-				100	47	7							-	1
-													}	000
=													<u> </u>	000
-													}	0 0 0
	l												†	0 0 0
-12.95-13.15	25	CS											†	0 0 0
-				↓	↓	↓	↓						13.20	000
						i				Bor	rehole terminated at 13.20m depth.		[
-														
		1			1					1			l	

	Boring P	rogress and	Water Ob	servations				Ca	noro1	Domortza		
Dat	e Time	Borehole	•	Borehole Diameter	Water			Ge	merai	Remarks		
	1 11110	Depth	Depth	(mm)	Depth							
						A	All dimension	ons in metre	s	Scale:	1:25	
Metho Used:		c sampling - ry Cored	+ Plan Used		echio GEO	205	Drilled By:	DW	Logged By:	AASmith + RLynes + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:16 | IF. Structural Soils Lid, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:17 | IF.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

STRUCTURAL SOILS

BOREHOLE LOG

Contract:				Client:		Borehole	e:		
MetroW	'est				Arup			B	H4
Contract Ref:	Start:	16.11.15	Groun	d Level:	National Grid Co-ordinate:	Sheet:			
730673	End:	17.11.15		24.08	E:352374.9 N:176021.7		1	of	7

	<u> 7300</u>	<u>573</u>	End:	17.11.15	24.08	E:352374.9 N:176021.7		of 7
		Sample	s & Testing	Mechanical	Log 💆 , 등 💄		Denth	Material
Depth (m)	No		Results	TCR SCR RQI (%) (%) (%)		Description of Strata		
0.25	1 2	ES B				MADE GROUND: Dark brown sandy slightly gravelly CLAY with frequent roots, rootlets and occasional snail shells. Sand is medium to coarse. Gravel is subangular fine. at 0.45m layer of sandstone cobbles.	(0.70)	
- 0.75 - 0.80	3 4	ES B			•••	MADE GROUND: Light orangish brown sandy slightly gravelly CLAY with occasional rootlets. Sand is fine to coarse. Gravel is angular fine to medium red mudstone.	0.70	
1.20 1.20 1.20 1.30	5	U V V D	c _u =100 c _r =25	Window run 101mm dia (100% rec)			(1.00)	
1.70-3.00 1.70 1.70-1.92 -1.85	7 20	DSPT SPT HP	N=231* c _u =5			MADE GROUND: Very stiff brown sandy slightly gravelly CLAY. Gravel is angular fine to coarse sandstone and concrete. MADE GROUND: CONCRETE, matrix supported with angular fine to coarse clasts of	1.70	
2.48-2.55	8	D HP	c _u =110/90	100		brown limestone voids up to 30mm. at 2.35m concrete cavities horizontal fracture with brown discolouration. Stiff greenish grey silty CLAY with occasional extremely weak lithorelicts of gypsum siltstone (weathered siltstone).	2.48	
2.70-2.90 2.70 3.00-4.00 3.00-3.45	9 21	D HP SPT	c _u =200 N=38			Very stiff reddish brown silty CLAY with	(0.90)	*
3.40		НР	c _u =125	100 55 55		Extremely weak reddish brown silty MUDSTONE crumbles into angular fine to coarse fragments of extremely weak mudstone up to 20mm. Mudstone contains rare gypsum veining up to 5mm. Bedding	3.45	\$X
3.90 4.00-5.00 4.00-4.21	10 22	D SPT	N=250*	100 70 60	150 - 150 -	fractures subhorizontal closely to widely spaced undulating rough open with red clay up to 2.5mm.	· · · · · · · · · · · · · · · · · · ·	

	Boring Pr	ogress and	Water Ob	servations	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth
16/11/15 17/11/15 17/11/15	16:00 08:00 16:00	4.00 4.00 12.50	1.70 1.70 1.70	116 116 116	1.80 2.00 2.00

General Remarks

- Location CAT and Genny scanned prior to excavation.
 Hand dug inspection pit to 1.20m depth.
 Dynamic sampling from ground level to 1.70m. Rotary coring of soft rock using T6-116 barrel with PCD bit and water flush between 1.70m to 12.50m.
 40mm diameter HDPE gas and groundwater monitoring standpipes installed as shown. Response zone is 1.50m to 10.50m.
 SPT hammer ADP02-2015 (E_r = 71.42%) used.

					A	All dimens	sions in metre	es	Scale:	1:25
Method Used:	sampling y Cored	+ Plan Use	2	acchio GEC	205	Drilled By:	ADP	Logged By:	BSaimen + RLynes	Checked By:

BOREHOLE LOG

100								DONLIN			UU
Contract:						Client:			Boreho	ole:	
		Me	etroWest					Arup			BH4
Contract Ref	f:		Start:	16.11.1	5 Grou	ınd Level:		National Grid Co-ordinate:	Sheet:		
7	7300	673	End:	17.11.1	5	24.08		E:352374.9 N:176021.7		2	of 7
Depth (m)	No	Samples Type	s & Testing Results	Mec TCR SC	hanical R RQD		Water	Description of Strata		Depth (Thick ness)	Material Graphic Legend
4.70-4.90 5.00-6.50 5.00-5.24	11 23	CS SPT	N=167*	100 70		(mm) _@		Extremely weak reddish brown silty MUDS crumbles into angular fine to coarse fragmextremely weak mudstone up to 20mm. Micontains rare gypsum veining up to 5mm. Efractures subhorizontal closely to widely undulating rough open with red clay up to 2 (stratum copied from 3.45m from previous stratum).	ents of idstone sedding spaced .5mm.		
-				100 10	0 100					-(4.95)	
6.30-6.45 6.50-8.00 6.50-6.64	12 24	CS SPT	N=300*	+ + + + + + + + + +		150 220 400	< >			- - - -	
7.00-7.20	13	CS		100 87	7 80					- - - - -	
7.90-8.00 8.00-9.50 8.00-8.13	14 25	CS SPT	N=300*	100 10	0 100			Extremely to very weak reddish MUDSTONE with occasional greenisl	brown grey	8.40	
- 8.85-9.00	15	CS	and Water Cl			180 330 450		siltstone bands.		-	
В	oring	rrogress	s and Water Ob	servations		- 11		O 1 D 1			

Method Used:	Dynam Rota	ic sampling ary Cored	+ Plan Used		cchio GEO		Drilled By:	ADP	Logged By:	BSaimen + RLynes	Checked By:	AGS
						Α	ll dimens	ions in metre	es	Scale:	1:25	
		Depth	Depth	(mm)	Depth							
Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	enerai	Remarks		
	Boring I	rogress and	Water Ob	servations				<u> </u>	1	D1		
		<u> </u>		1 1 1 1		<u> </u>					<u> </u>	
8.85-9.0	0 15	CS									Ţ.	

GINT_LIBRARY_V8_05.GLB LibVersion: v8_05 - Lib0004 PijVersion: v8_05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673_METROWEST.GPJ - v8_05 | 21/01/16 - 15:17 | IF.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

BOREHOLE LOG

Contract:							Cl	lient:				Boreho	le:	
		Me	etroWest								Arup			BH4
Contract Ref	:		Start:	16.1	1.15	Grou	ınd I	Level:			National Grid Co-ordinate:	Sheet:		
7	300	673	End:					24.08			E:352374.9 N:176021.7		3	of 7
Donath		Samples	s & Testing]	Mech	anical	Log	ill & ru- trion	ter					Material
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	If (mm	Backfill & Instrumentation	Water		Description of Strata		(Thick ness)	Graphic Legend
9.50-11.00 9.50-9.65 9.70-9.99	26 16	SPT CS	N=273*	100				7 9 0		MU silts	remely to very weak reddish DSTONE with occasional greenish tone bands. atum copied from 8.40m from previous so			
10.47-10.66	17	CS		100	89	83				with	. at 10.32m undulating rough fracture in firm clay.	infilled	- - - - - - - - - -	
11.00-12.50 11.00-11.20 11.00-11.05	18	CS SPT	N=750*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X		2			COllight subr \mino Very \Crui	dium strength light greyish green NGLOMERATE. Matrix supported. Matrix green sandy siltstone. Clasts are angrounded fine gravel, quartz, calcite and eral. Fractures are drilling induced. The support of the support o	atrix is ular to black TONE.	11.28	000
11.82-12.00	19	CS		67	67	67				With Wea wear 2-3r Wea angu	n reddish brown clay. Ak reddish brown MUDSTONE. Distincted to sandy clay with lithreolicts mm. No fractures. Ak reddish brown MUDSTONE. Breakular blocks. at 11.80m undulating rough joint with hing on surface.	stinctly up to	- 11.72	
12.50-12.63	28	SPT	N=375*							Bore	ehole terminated at 12.50m depth.		12.50	
Bo	oring	Progress	s and Water Ob	servati	ons								-	

	Boring P	rogress and	Water	Observ	ations					1	D 1		
Date	Time	Borehole Depth		ng Bo	orehole ameter	Water Depth			Ge	eneral	Remarks		
		Берш	Бері	.11 ((mm)	Берш							
								All dimens	ions in metre	es	Scale:	1:25	
Method Used:		c sampling		lant Ised	Coma	cchio GEO	205	Drilled By:	ADP	Logged By:	BSaimen + RLynes	Checked By:	AGS

GINT LIBRARY V8 05 GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST GPJ - v8 05 | 21/01/16 - 15:17 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

BOREHOLE LOG

Contract:				Client:		Borehole	e:		
MetroW	⁷ est				Arup			В	3H5
Contract Ref:	Start:	18.11.15	Groun	d Level:	National Grid Co-ordinate:	Sheet:			
730673	End:	19.11.15		24.78	E:352391.2 N:176005.7		1	of	8

7	306	573	End:	19.11.15	5	24.78		E:3523	391.2 N	N:176005.7		1	of 8
		Samples	& Testing	Mech	nanical Lo	og 😽 _ 5	H	•			•	Depth	Mate
Depth (m)	No	Туре	Results	TCR SCF (%) (%)	R RQD (n) (n)	Backfill Instru	Water	D	escription	n of Strata		(Thick ness)	
								MADE GROUN	ND: Dar	k brown sandy g	ravelly	- 0.15	<u>•</u>
										s, rootlets and lead Gravel is angu		0.15	X
0.20 0.25	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	ES B						subangular fine t		. Graver is unge	to	0.30	\bowtie
0.23	-	В						(TOPŠOIL)	ID. 13.1.	11	11.1.41	F	\bowtie
0.50	3	В						clayev sandy GF	ND: Ligni RAVEL v	t yellowish grey s vith frequent roots	Silgnuy S. Sand	(0.60)	\bowtie
		_						is fine to coarse	. Gravel	is angular to suba	ngular	(0.00)	\bowtie
0.70	4	ES						fine to coars			oallast)	Ī	\bowtie
								MADE GROU	ND: Darl	k brown sandy s	slightly _	0.90	
								gravelly CLAY	with occa	sional roots. Sand	is fine	L	\bowtie
1.00 1.05	5	B ES						limestone and m		angular fine to m	ieaium	(0.55)	\bowtie
1.20-1.65	1	SPT	N=21					MADE GROU	ND: Ve	ry soft extremely	y low	[(0.55)	\bowtie
1.20-1.03	7	D	11-21					strength light re-	ddish bro	wn mottled black	sandy	-	\bowtie
1.30		HP	$c_u=5$					slightly gravelly plant remains. S	Sand is f	with frequent roo	ots and avel is r	1.45	\bowtie
1.55		LID	7.5	Window				subangular fine i	reddish br	rown mudstone. (Pe	ossible	-	<u> </u>
1.55 1.60-1.80	8	HP D	$c_u=75$	110mm (100%				reworked clay)	high street	ngth light reddish	hroun	(0.45)	— <u> </u>
1.70	ਁ	HP	$c_u=75$	(130,0	/			mottled greyish	green	slightly sandy g	ravelly	[<u> </u>
								CLAY with free	uent root	s. Sand is fine to	coarse.	1.90	<u> </u>
1.95		HP	c _u =150 N=26	<u> </u>				mudstone.	r to suban	igular fine reddish	brown	_	
2.00-2.45	2	SPT	N=26	1 1				between 1.:		1.56m band of ve	ery soft	-	
								greyish green silt		11: 1. 1	11 - 1 - 41	-	<u> </u>
2.30-2.45	9	D						sandy CLAY wi	igtn iignt ith occasi	reddish brown s onal greyish green	siigntiy sandv	<u> </u>	
2.30		HP	$c_u=86$	Window				nodules.		<i>G</i> - <i>y</i> - · · <i>g</i> - ·		-	<u> </u>
2.50		HP	$c_u = 150$	110mm (100%								(1.30)	<u> </u>
													<u> </u>
2 00 2 00	1.0	* *										-	<u> </u>
2.80-3.00	10	U										-	<u></u> -
3.00-4.00				A								-	
3.00-3.45	3	SPT	N=49		1							3.20	=
3.00-3.20 3.20-3.45	11 12	D D					•			weathered light r			
3.30	12	HP	$c_u = 100$					brown MUDST	ONE wit	h frequent light g mbles into lithore	greyish		
				100				to 10mm.	iuics. Ciu	moles into nuiore	nes up	-	
3.60-3.85	13	CC										-	
3.60	13	CS HP	$c_u = 175$									-	
			u									-	
												-	
4.00-5.00		an-	37.40=4	1 1	1								
4.00-4.29	4	SPT	N=107*									-	
4.20	1.4	HP	$c_u = 100$	100 95	95							-	
4.30-4.50	14	D			\perp							-	
				1 1 1		<u> </u>						l	
Вс	oring	Progress	and Water Ob	servations				~		D 1			
		Borel		Borehole	Water	1		Ge	eneral	Remarks			
Date	Гіте	Dep	I	Diameter (mm)	Depth	1 1 000	atio-	CAT and Commercia	nonned	rior to avanuation			
	7:00		I	116	2.00	2. Han	d dug	g inspection pit to	1.20m de	rior to excavation. pth.			
	08:00 17:00			116 116	2.00 2.10	3. Dyn	amic	sampling from gre	ound leve	l to 1.70m. Rotary d water flush betw	coring	of soft ro	ock
1)/11/13	17.00	12.,	1.70	110	2.10	4. 40m	m di	ameter HDPE gas	and grou	ndwater monitoring	g standp	ipes inst	alled
						shov	vn. R	desponse zone is 3.	.00m to 6.	.00m.		_	
						3. SP1	nam	mer ADP02-2015	$(E_r = /1.$	4270) usea.			
								imensions in metre	es	Scale:	1:25		
Method D Used:	ynan	ic samp	ling + Plan				Dri		Logged	RLynes + BSaimen	Checke	ed	
usea:	Kot	ary Cor	ed Used	ı. Coma	cchio GE	O 205	By:	ADP	By:		By:		A

	Boring Pr	ogress and	Water Ob	servations		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth	
18/11/15 19/11/15 19/11/15	17:00 08:00 17:00	6.50 6.50 12.50	1.70 1.70 1.70	116 116 116	2.00 2.00 2.10	
1		1				ı

General Remarks

- Location CAT and Genny scanned prior to excavation.
 Hand dug inspection pit to 1.20m depth.
 Dynamic sampling from ground level to 1.70m. Rotary coring of soft rock using T6-116 barrel with PCD bit and water flush between 2.00m to 12.50m.
 4.40mm diameter HDPE gas and groundwater monitoring standpipes installed as shown. Response zone is 3.00m to 6.00m.
 SPT hammer ADP02-2015 (E_r = 71.42%) used.

				A	All dimensi	ions in metre	S	Scale:	1:25
Method Used:	Dynamic s Rotary	 + Plant Used	cchio GEC	205	Drilled By:	ADP	Logged By:	RLynes + BSaimen	Checked By:

BOREHOLE LOG

120										BOKE		L L	UG
Contract:							Cl	ient:			Boreho	ole:	
		Me	etroWest							Arup			BH5
Contract Ref	:		Start	: 18.1	1.15	Gro	und L	evel:		National Grid Co-ordinate:	Sheet:		
7	7300	673	End:	19.1	1.15		,	24.78	}	E:352391.2 N:176005	5.7	2	of 8
		Samples	s & Testing]	Mech	anical	Log	& no	L	,	<u>'</u>	Denth	Material
Depth (m)	No	Туре	Results		SCR	RQE (%)	If (mm)	Backfill & Instru- mentation	Water	Description of Strata		(Thick ness)	
- 4.55		HP	c _u =25							Extremely weak distinctly weathered brown MUDSTONE with frequent	light grevish	-	
4.70-5.00	15	D		100	95	95				green sandy nodules. Crumbles into 1 to 10mm.	•	-	
5.00-6.50 5.00-5.26 5.00-5.30 5.30	5 16	SPT D HP	N=143* c _n =200				_			(stratum copied from 3.20m from prevolution in a 4.60m layer of harder mudston as medium gravel surrounded by extimudstone of lower strength than the resulting (possible fracture). at 5.20m gypsum gravel in (weathered gypsum vein).	ne recovered remely weak st of the unit	-	
5.50		НР	c _u =225									(4.46)	
5.80-6.10	17	D		90	90	90						-	
6.00		HP	c _u =150									-	
6.30-6.50 6.40 6.50-8.00	18	D HP	c _u =150		<u> </u>		_					- -	
6.50-6.72 6.60	6	SPT HP	N=167* c _u =75									-	
6.80-7.00	19	D						X				-	
7.00		HP	c _u =175									-	
7.30-7.45	20	D		100	100	100							
7.50 7.60	21	HP C	c _u =225							Very weak reddish brown MUDSTON	E.	7.66	
-												(0.44)	
8.00-9.50 8.00-8.17	7	SPT	N=167*		1	1		_		Weak reddish brown silty MUDS occasional greenish grey siltstone u Bedding fractures are subhorizonta	to 15mm.	8.10	
2 80 0 10	22	C		100	97	90	80 200 650			widely spaced undulating rough moderately wide infilled with red medium fragments of mudstone. penetrates downward and along the weakens and weathers the upper and lo surfaces up to 50mm.	open to clay/fine to Weathering ractures and ower fracture	- - -	
8.80-9.10	22									at 8.26m bedding fracture is 5 rough. Lower wall rock weathers into	ery weak	<u> </u>	

	Boring P	rogress and	Water O	bservations				Ca		Domontra		
Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	merai	Remarks		
Date	Time	Depth	Depth	(mm)	Depth							
										1		
							All dimens	ions in metre	es	Scale:	1:25	
Method Used		c sampling	+ Pla		echio GEO	205	Drilled By:	ADP	Logged By:	RLynes + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:18 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

BOREHOLE LOG

10 07 07 07
Table Tabl
Depth (m) No Type Results TCR SCR RQD If TCR
MMG-II up to 50mm. y 50-11.00 y 7.50-11.00 y 9.50-9.62 y 9.60-9.90 23 SPT N=333* N=33
MMG-II up to 50mm. y 50-11.00 y 7.50-11.00 y 9.50-9.62 y 9.60-9.90 23 SPT N=333* N=33
MMG-II up to 50mm. y 50-11.00 y 7.50-11.00 y 9.50-9.62 y 9.60-9.90 23 SPT N=333* N=33
9.50-11.00 9.50-9.62 9.60-9.90 23 C N=33*
9,50-11.00 9,50-9,62 9,60-9,90 23 C N=333* N=
9.50-9.62 9.60-9.90 23 C N=333* C N=300-9.90 N=3000-9.90 N=3000-9.90 N=3000-9.90 N=3000-9.90
penetrates downward and along the fractures and weakens and weathers the upper and lower fracture surfaces up to 50mm. (stratum copied from 8.10m from previous sheet) 100 100 100 80 200 650 11.00-12.50 11.00-11.10 9 SPT N=600* N=600* Medium strong thinly laminated greenish grey 0 0 0 0
surfaces up to 50mm. (stratum copied from 8.10m from previous sheet) 100 100 100 80 200 650 11.00-12.50 11.00-11.10 9 SPT N=600* N=600* Medium strong thinly laminated greenish grey 0 0 0 0
100 100 100 80 200 650 100-12.50 11.00-12.10 9 SPT N=600* N=600* N=600* Medium strong thinly laminated greenish grey 0 0 0 0
11.70-11.95 25 C N=600* 11.70-11.95 25 C 70 67 64 25 Medium strong thinly laminated greenish grey 0 0 0
11.70-11.95 25 C 70 67 64 25 Medium strong thinly laminated greenish grey 0 0 0 0
11.00-12.50 11.00-11.10 9 SPT N=600* N=600* N=600* Medium strong thinly laminated greenish grey OOO
11.00-12.50 11.00-11.10 9 SPT N=600* N=600* N=600* Medium strong thinly laminated greenish grey OOO
11.00-12.50 11.00-11.10 9 SPT N=600* N=600* N=600* Medium strong thinly laminated greenish grey OOO
11.00-12.50 11.00-11.10 9 SPT N=600* N=600* N=600* Medium strong thinly laminated greenish grey OOO
11.70-11.10 9 SPT N=600*
11.70-11.95 25 C Medium strong thinly laminated greenish grey OOO
11.70-11.95 25 C Medium strong thinly laminated greenish grey O O O
11.70-11.95 25 C Medium strong thinly laminated greenish grey O O O
11.70-11.95 25 C Medium strong thinly laminated greenish grey O O O
11.70-11.95 25 C Medium strong thinly laminated greenish grey O O O
10 07 07 07
CONGLOMERATE. Matrix supported. Matrix [(0.35)] O O
constitutes more than 70%. Clasts are subangular
to subrounded grey siltstone, quartz and green -12.05 0000 mudstone/siltstone. Bedding fractures are
undulating rough open clean. Very weak reddish brown sandy MUDSTONE.
12.30-12.50 26 C Bedding fractures are subhorizontal very closely to
12.50-12.65 10 SPT N=214* W W W medium spaced undulating rough open to 12.50 medium spaced undulating rough open to 12.50
up to 3mm. Borehole terminated at 12.50m depth.
. Borchoic terminated at 12,50m depth.
- - - - - - - - -
.

ola s		Boring Pr	ogress and	Water O	servations				Ca	noro1	Remarks		
1110	Date	Time	Borehole	Casing	Borehole Diameter	Water			Ge	nerai	Kemarks		
SID1.	Date	Tillic	Depth	Depth	(mm)	Depth							
ď													
2													
5													
Jea Jea													
j,													
SIIS											1		
ž							A	All dimension	ons in metre	S	Scale:	1:25	
Shucun	Method Used:	Dynamic Rotai	sampling y Cored	+ Plai Use		echio GEO	205	Drilled By:	ADP	Logged By:	RLynes + BSaimen	Checked By:	AGS

GINT LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:18 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk,

BOREHOLE LOG

Contract:				Client:		Borehole	e:		
MetroV	Vest				Arup			В	3H6
Contract Ref:	Start:	30.09.15	Groun	d Level:	National Grid Co-ordinate:	Sheet:			
730673	End:	02.10.15		22.68	E:352408.7 N:176033.6		1	of	8

	7	7300	673	End:	02.10.	.15	2	22.6	68	E:352408.7 N:176033.6	1	of 8
			Samples	s & Testing	Me	echanical	Log	શ્ર .	uo _		Depth	Material
	Depth (m)	No	Туре	Results	TCR S	SCR RQE (%) (%)		Backfill Instru	mentatio Water	Description of Strata	(Thick ness)	
	0.10-0.50	1	В							MADE GROUND: Tarmac. MADE GROUND: Light grey slightly clayey slightly silty sandy GRAVEL with a low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse limestone	(0.45)	
	0.50-1.00	2	В							and sandstone. Very stiff dark red mottled light greenish grey slightly sandy CLAY. Sand is fine to coarse. Occasional rootlets.	0.50	
K.	1.20-1.65	1.65	SPT	N=28							(0.90)	
co.u	-										1.40	<u> </u>
iail: ask@soils.	1.40-2.10 1.50-1.65	3	D							Soft reddish brown slightly sandy silty CLAY with rare greenish black organic inclusions (up to 10mm diameter) and rare bluish grey silty inclusions (up to 5mm diameter). Sand is fine to coarse.	(0.50)	xx xx
.solls.co.uk, En	- - -1.95-2.10	4	CS		100					Firm to stiff reddish brown silty CLAY with rare bluish green lenticular silty inclusions.	1.90	X X X X
+/-1004, web. www	2.10-3.00 2.10-2.90	5	D		1		2			Very soft to soft dark reddish brown slightly sandy silty CLAY. Sand is fine to coarse.	(0.80)	* - * X * X * X * X X
1000, Fax: 011/-9	-				56					Firm dark reddish brown silty CLAY.	2.90	x
EB. 1el: 0117-947	3.00-4.50 3.00-3.26	3.26	SPT	N=143*						Extremely weak thinly laminated reddish brown partially weathered MUDSTONE.	-	
Bedminster, Bristol, BS5 4.	3.50-3.70	6	D		73	27 0					-	
, Milliouse Lane, Bedminst	- - -										(2.00)	
nons	-										}	
, Still	-					$\downarrow \mid \downarrow$					}	

	Boring Pr	ogress and	Water Ob	servations	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth
30/09/15 01/10/15 01/10/15 02/10/15 02/10/15	18:30 08:00 18:00 08:00 18:00	2.10 2.10 8.90 8.90 12.00	1.30 1.30 2.30 2.30 2.30	120 120 120 120 120 120	Dry Dry 2.00 4.00 2.00
02/10/13	10.00	12.00	2.50	120	2.00

General Remarks

- Location CAT and Genny scanned prior to excavation.
 Hand dug inspection pit to 1.20m depth
 Dynamic sampling from ground level to 1.40m. Rotary coring of soft rock using T6-116 barrel with PCD bit and water flush between 1.40m to 12.00m.
 50mm diameter HDPE gas and groundwater monitoring standpipes installed as shown. Response zone is 8.50m to 12.70m.
 SPT hammer AR019-2015 (*E*_r = 68.04%) used.

				1	All dimens	ions in metre	es	Scale:	1:25
Method Used:	Dynamic sampling + Rotary Cored	Plan Used	Beretta T41		Drilled By:	TOR	Logged By:	AASmith + APope	Checked By:

GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:19 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

BOREHOLE LOG

Contract:							Clie	nt:				Boreho	le:	
	_	Me	troWest			1					Arup			BH6
Contract Re			Start:				and Lev				National Grid Co-ordinate:	Sheet:		
	730	673	End:					2.68			E:352408.7 N:176033.6		2	of 8
Depth (m)	No		& Testing Results	TCR (%)	Mech SCR (%)	anical RQD (%)	Log Signature (mm)	Instru- mentation	Water		Description of Strata		Depth (Thick ness)	Material Graphic Legend
4.50-6.00					•					parti (stra	emely weak thinly laminated reddish ally weathered MUDSTONE. tum copied from 3.00m from previous so weak thinly bedded reddish	l	5.00	
5.15-5.25	8	CS		73	60	19					DSTONE.	olowii	(0.70) (0.70) (0.70)	
5.70-5.90	9	CS								Wea	k to medium strong thinly bedded dark r vn MUDSTONE.	eddish	- <u>3.70</u> -	
6.00-7.50	6.19	SPT(c)	N=214*	+	- X -					V		l doub	(0.70) - - - 6.40	
6.85-7.10	10	CS		70	60	27	2			redd	weak thinly to very thinly bedded ish brown MUDSTONE.	l dark	(0.70)	
7.10-7.30	7	D								Wea redd	k to medium strong very thinly bedde ish brown MUDSTONE.	d dark	7.10	
7.50-8.90	11	GG											- - - 7.90	
7.85-8.25	11	CS		100	93	86	110 190 390			MU spac	k thinly bedded dark reddish DSTONE. Fractures are closely to med subhorizontal undulating rough to so 1-2mm and infilled with red silty clay.	edium	(1.00)	
8.90-9.40				80	70	3.1				Desc	cription on next sheet		8.90	

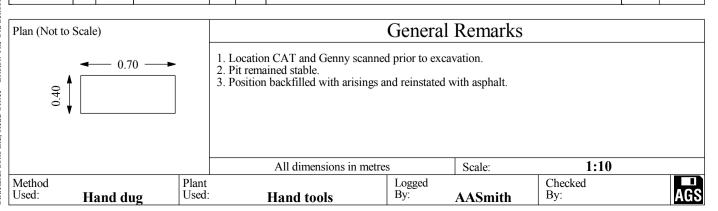
	Boring Pr	ogress and	Water Ob	servations				Ca	noro1	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter (mm)	Water Depth			Ge	ilerai	Kemarks		
										T	4.07	
						F	All dimensi	ons in metre	S	Scale:	1:25	
Method Used: Dynamic sampling + Rotary Cored			+ Plan Used		Seretta T41		Drilled By:	TOR	Logged By:	AASmith + APope	Checked By:	AGS

GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST.GPJ - v8 05 | 21/01/16 - 15:19 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

BOREHOLE LOG

Contract:							Cl	ient:					Boreho	le:	
		Μe	etroWest								Aru	p	Borono		BH6
Contract Ref	:			30.0	9.15	Grou	ınd L	evel:				rid Co-ordinate:	Sheet:		
7	730	673	End:					22.68			E:352	408.7 N:176033.6		3	of 8
D 4		Sample	s & Testing]	Mech	anical	Log	ll & u- tion	er					Depth	Material
Depth (m)	No	Туре	Results	TCR (%)	SCR (%)	RQD (%)	If (mm	Backfill & Instru- mentation	Water		Г	Description of Strata		(Thick ness)	Graphic Legend
9.10-9.30	12	CS								brow	m MUDŠT	weak thinly bedded dark ONE.		(0.50)	
	12			80	70	34				(stra	tum copied	from 8.90m from previous	sheet)		
9.40-10.90 9.45-9.90	14	CS		+		*				Wea	k thinly OSTONE.	bedded dark reddish	brown	9.40	
9.45-9.90	14	CS												9.70	
9.80-9.95	13	CS								Med SIL7	ium strong STONE.	to strong bluish grey fine	grained	(0.30)	X X X X X X X X X X X X X X X X X X X X
-										Wea	k to reddish	n brown MUDSTONE.		10.00	\$ \$ \$ \$ \$ * * * * *
_				100	80	73				vv ca	k to reddish	I DIOWII WICDGTOTAL.		-	
[
-														(1.10)	
-														-	
				\downarrow	<u> </u>	$\downarrow \downarrow$			<					-	
10.90-11.70						 [X				11.10	
-										Med	ium strong	reddish brown MUDSTON	NE.	-	
11.40-11.70	1.5	CS		112	112	112								-	
11.40-11.70	13	CS					4							-	
-				+	V	+								-	
-							ľ							(1.60)	
12.00-12.45	12.45	SPT(c)	N=7											-	
<u> </u>														-	
														-	
12.45-12.70	12.70	SPT(c)	N=60*											_	
<u> </u>								******		Bore	hole termin	ated at 12.00m depth.		12.70	
-														-	
-														_	
_														-	
-														-	
п	rin c	Drossa	and Water Ol-	gor rot	ions	•	<u> </u>	1		1					
Be	лшg		s and Water Ob hole Casing	Borel		Wate	er				Ge	eneral Remarks			

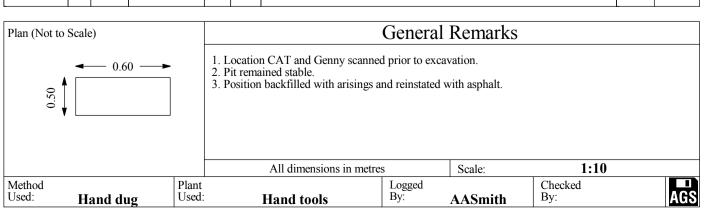
Diameter (mm) Date Time Depth Depth Depth 1:25 All dimensions in metres Scale: Dynamic sampling + Rotary Cored Logged By: AASmith + APope Drilled Checked Method Plant Used: Used: Beretta T41 By: TOR By:


GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log COMPOSITE LOG | 730673 METROWEST GPJ - v8 05 | 21/01/16 - 15:19 | IF.
Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

TRIAL PIT LOG

Contract:				Client:		Trial Pit	:			
MetroW	est				Arup]	FD	Γŀ	1
Contract Ref:	Start:	16.09.15	Groun	d Level:	National Grid Co-ordinate:	Sheet:				
730673	End:	16.09.15					1	of		1

/306/3 End:				16.09.15					1 (of I
Sam	ples a		tu Tests Results	Water Backfill			Description of Strata		Depth (Thick ness)	Material Graphic Legend
0.10	1	ES	1TUB,1J1,1VOC				MADE GROUND: Black tarmac		(0.20)	
-					Brickwork 0.	50m	MADE GROUND: Dark brown red sandy COBBLES. Sand is ficoarse. Cobbles are angular tabricks up to 200mm.	ne to bular	(0.30)	
0.70-1.10	3	В			0.10m		MADE GROUND: Dark be clayey gravelly SAND with occas rootlets and low cobble content, is fine to coarse. Gravel is subant to subrounded fine to coarse belimestone, glass and ballast. Collare angular tabular bricks up 150mm.	sional Sand gular brick, bbles	0.50 (0.20) 0.70	
0.90	2	ES	1TUB,1J,1VOC		$ \begin{array}{cccc} \Delta & & \Delta \\ \Delta & & A \end{array} $ Concrete $ \begin{array}{cccc} \Delta & & & A \end{array} $	50m	POSSIBLE MADE GROUND: reddish brown very clayey Sawith occasional rootlets. Sand is to coarse.	AND s fine	(0.40)	
1.10		V	c _u =48 c _r =18		A		Trial pit terminated at 1.10m deptl	h	1.10	
-								-		
-								-		
_								ļ		


GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PijVersion: v8 05 - Core+Logs 0003 | Log TRIAL PIT LOG | 730673 METROWEST. GPJ - v8 05 | 07/01/16 - 11:37 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk

TRIAL PIT LOG

0									• •	\!/ \L				•
Contract:								Client:			Trial Pi	t:		
		Μe	etroW	/est					Arup			\mathbf{F}	DTP2)
Contract Ref	:			Start:	16.0	9.15	Groun	d Level:	National Grid Co-ordinate:		Sheet:			
7	300	673		End:	16.0	9.15						1	of 1	
Samp	oles a	nd In-si	tu Tests		ater	Backfill			Description	n of Strata		Depth (Thick	Materia Graphi	
Depth	No	Type	Res	sults	W	Bac			Description	ii oi Suata		ness)	Legen	

Sam	ples a	nd In-si	tu Tests	Water	Backfill		Description of Strata	Depth (Thick	Material Graphic
Depth	No	Type	Results	² M	Вас		Description of Strata	ness)	Legend
0.30	1	ES	1TUB,1J1,1VOC			Brickwork 0.60m	MADE GROUND: Black tarmac. MADE GROUND: Dark brownish black clayey sandy GRAVEL with a low cobble and boulder content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse brick, concrete, limestone and sandstone. Cobbles are angular tabular bricks up to 200mm. Boulders are angular tabular brick and concrete up to 250mm.	(0.15)	
0.65-0.90	2	D				0.10m 4 4 4 4 4 0.40m Concrete	Very soft dark brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse limestone and sandstone.	(0.25)	
0.90-1.20	4	D	1.TTV T. 1.1.1.1.0.0			Δ	Soft reddish brown slightly sandy silty CLAY. Sand is fine to coarse.		× · · ×
0.95	3	ES	ITUB,1J1,1VOC			0.20m		(0.30)	X X X X X X X X X X X X X X X X X X X
1.20		V	c _u =48/58 c _r =16/18				Trial pit terminated at 1.20m depth.	-	

GINT_LIBRARY V8 05.GLB LibVersion: v8 05 - Lib0004 PifVersion: v8 05 - Core+Logs 0003 | Log TRIAL PIT LOG | 730673 METROWEST.GPI - v8 05 | 07/01/16 - 11:37 | IF. Structural Soils Ltd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax. 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk.

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council
6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex E

Laboratory Certificates

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

Site Address Portishead & Pill Station Car Parks

Technical Information for Analytical Results

Analysis

* - denotes analysis covered by our UKAS accreditation

- denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition

AR = Sample tested in as-received condition.

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

Where results are less than the limit of detection, the value of 0 is used in calculations.

Deviating Codes

Deviating Samples

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample taken.

- a The date and/or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable holding time(s). It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- b No sampling time given (waters only) unable to confirm if samples are within acceptable holding times.
- c This Test Item was received in an inappropriate container; it is possible that sample and/or analyte integrity has not been maintained and that the results are non-representative of the original sample taken.
- d On receipt, the temperature of the sample received was found to fall outside the recommendations of EN ISO 18512:2007 Soils & Granular Wastes.
- e The sample was received in a container that had been filled incorrectly which may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- f The delay between Sampling and Sample Receipt is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- g The delay between Sampling and Analysis is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.

The following Additional Deviating Sample Codes may also be used

- I/S Insufficient sample mass/volume received for accurate quantification of this analyte.
- U/S The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available.

Deviating Methods

- Z A minor deviation from the Test Method was necessary but this is deemed to have had no impact on the Test Result, the legitimacy of the method validation or the Accreditation Status of the Test Method.
- Y A significant deviation from the Test Method was necessary which is deemed to have had no impact on the Test Result, however, due to a lack of sufficient supporting validation, the Accreditation Status of the Method has been removed.
- W The normal LOD of the instrument/method could not be attained, thus an elevated LOD or LOQ has been applied to the Test Data, however, the data reported meets the requirements of the Client and does not affect compliance with the specification limit (where applicable).
- V One of the QA/QC parameters failed, however, the increased implied Uncertainty associated with the Test Result meets the requirements of the Client and does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.2.9).
- U The precision acceptance criteria associated with the Test Method could not be met but the Test Result fulfils the Client's objectives and the elevated Uncertainty does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.8.10).
- T The Test Method used was supplied by the Client and involved a simple modification of a Test Method for which ACSE holds accreditation (Quality Manual, Section 18.3.8).

Head Office
Unit 14B
Blackhill Road West
Holton Heath Trading Park

Poole
Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065 Quality Testing & Materials Consultancy to the Construction Industry

Page: 7 of 7

ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset BH16 6LE

Certificate of Analysis

Certificate Number: 16-06100-Issue 1-Page: 1

Site Address: Portishead & Pill Station Car Parks

Client Order No: 16-79208

Date of Sampling: 12/12/2016

Date Received: 20/12/2016

Report Date: 18/01/2017

Please find your certificates of test attached for your samples received in the laboratory on 20/12/2016 under our laboratory reference 16-06100.

Remarks:

None

Results reviewed by:

David Redfern Technical Supervisor

Test Certificates approved by:

Mark Rowley Laboratory Manager

Any opinions or interpretations indicated are outside the scope of our UKAS accreditation.

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Excel copies of reports are valid only when accompanied by this PDF certificate.

Client's Sample Description / ACS Material Description are noted for reference only.

Head Office Registered Office

Unit 14B Unit 14B

Blackhill Road West
Holton Heath Trading Park
Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

Tel 01202 628680 ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 1 of 6

Site Address Portishead & Pill Station Car Parks

1.10m

ACSE Sample Number 26610 Sample ID 310806 - 16-79208 310807 - 16-79208 310808 - 16-79208

0.40m

MADE GROUND. Grey SA MADE GROUND. Grey SA MADE GROUND. Grey SA

Clients Sample Ref. TPPH03 TPPH04 TPPH04

Location / Sample Depth (m) 12/12/2016 13/12/2016 13/12/2016 **Date Sampled**

Time Sampled Sample deviating codes Client's Sample Description

0.30m

ACS Testing Material Description

ND ND SAND SAND SAND Principal Matrix (as received)

		paa (a.o .oo.	,	07.1.12		0,2		0,2	
Determination	Units	Method		Result	AS	Result	AS	Result	AS
Anions									
Sulphate	mg/l	MT/ACSE/204	L	< 3.00	*	43.7	*		
Water Soluble Sulphate	mg/l	MT/ACSE/204	AD	4.61	*g	23.0	*g	28.6	*g
BTEX									
Benzene	mg/kg	MT/ACSE/101	AR	0.17	*fg				
Ethylbenzene	mg/kg	MT/ACSE/101	AR	< 0.10	*fg				
m+p-xylene	mg/kg	MT/ACSE/101	AR	< 0.19	*fg				
o-xylene	mg/kg	MT/ACSE/101	AR	< 0.10	*fg				
Toluene	mg/kg	MT/ACSE/101	AR	< 0.10	*fg				
Total BTEX	mg/kg	MT/ACSE/101	AR	< 0.50	*fg				
Carbon									
TOC (Total Organic Carbon)	%	MT/ACSE/102	AR	30.2	*				
FOC	%	MT/ACSE/102	AR	0.305		0.293		0.230	
Loss on Ignition									
Loss on Ignition (440 ℃)	%	MT/ACSE/302	AD	5.0	*g				
Metals (Leachate)					, i				
Arsenic	mg/l	MT/ACSE/205	L	< 0.003	*g	< 0.003	*g		
Boron	mg/l	MT/ACSE/205	L	0.056	3	0.075	3		
Cadmium	mg/l	MT/ACSE/205	L	< 0.0003	*g	< 0.0003	*g		
Chromium	mg/l	MT/ACSE/205	L	< 0.001	*g	0.001	*g		
Copper	mg/l	MT/ACSE/205	L	0.008	*g	0.017	*g		
Mercury	mg/l	MT/ACSE/202	L	0.0002	*g	< 0.0001	*		
Nickel	mg/l	MT/ACSE/205	L	0.0011	*g	0.0060	*g		
Lead	mg/l	MT/ACSE/205	L	0.005	*g	< 0.004	*g		
Zinc	mg/l	MT/ACSE/205	L	0.014	*g	0.033	*g		
Metals (Soil)									
Arsenic	mg/kg	MT/ACSE/201	AD	59.8	*#	54.0	*#	70.1	*#
Cadmium	mg/kg	MT/ACSE/201	AD	4.52	*#	5.46	*#	4.52	*#
Chromium	mg/kg	MT/ACSE/201	AD	34.2	*#	46.7	*#	32.9	*#
Copper	mg/kg	MT/ACSE/201	AD	146	*#	408	*#	302	*#
Mercury	mg/kg	MT/ACSE/202	AD	0.26	*#g	0.31	*#g	2.27	*#g
Nickel	mg/kg	MT/ACSE/201	AD	73.3	*#	85.0	*#	66.2	*#
Lead	mg/kg	MT/ACSE/201	AD	326	*#	183	*#	1970	*#
Zinc	mg/kg	MT/ACSE/201	AD	530	*#	532	*#	1460	*#
Boron (Hot Water Soluble)	mg/kg	NAM/ACSE/X08	AD	0.14		1.62		0.51	
Organic Matter									
Soil Organic Matter	%	NAM/ACSE/X29	AD	1.4		2.5		2.6	
Petroleum Hydrocarbons									
Total TPH (C10-C40)	mg/kg	MT/ACSE/105	AR	114	*#fg	114	*#g	72.4	*#g
pH and Conductivity									
pH (@ 20 ℃)	units	MT/ACSE/301	L	7.9	*	7.7	*		
pH (@ 20 ℃)	units	MT/ACSE/301	AD	6.9	*fg	6.5	*g	6.6	*g
Phenols									
Total Phenol (Sum of 4 specific phenols)	mg/kg	MT/ACSE/107	AD	< 0.05		< 0.05		< 0.05	

Head Office Registered Office

Unit 14B Unit 14B Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 2 of 6

Site Address Portishead & Pill Station Car Parks

13/12/2016

ACSE Sample Number 26610 Sample ID 310806 - 16-79208 310807 - 16-79208 310808 - 16-79208

13/12/2016

MADE GROUND. Grey SA MADE GROUND. Grey SA MADE GROUND. Grey SA

Clients Sample Ref. TPPH03 TPPH04 TPPH04

Location / Sample Depth (m) 0.30m 0.40m 1.10m

Date Sampled Time Sampled Sample deviating codes

12/12/2016

Client's Sample Description

ND ND SAND SAND SAND Principal Matrix (as received)

Determination	Units	Method		Result	AS	Result	AS	Result	AS
Poly Aromatic Hydrocarbons									
Naphthalene	mg/kg	MT/ACSE/106	AD	0.76	*#g	0.64	*#g	1.03	*#g
Acenaphthylene	mg/kg	MT/ACSE/106	AD	1.06	*#g	0.53	*#g	0.49	*#g
Acenaphthene	mg/kg	MT/ACSE/106	AD	0.16	*#g	0.12	*#g	0.25	*#g
Fluorene	mg/kg	MT/ACSE/106	AD	0.43	*#g	0.29	*#g	0.51	*#g
Phenanthrene	mg/kg	MT/ACSE/106	AD	1.94	*#g	1.85	*#g	2.53	*#g
Anthracene	mg/kg	MT/ACSE/106	AD	4.10	*#g	2.44	*#g	2.44	*#g
Fluoranthene	mg/kg	MT/ACSE/106	AD	5.71	*#g	3.17	*#g	4.01	*#g
Pyrene	mg/kg	MT/ACSE/106	AD	5.86	*#g	3.12	*#g	3.73	*#g
Benzo (a) anthracene	mg/kg	MT/ACSE/106	AD	1.74	*#g	1.34	*#g	1.70	*#g
Chrysene	mg/kg	MT/ACSE/106	AD	2.44	*#g	2.17	*#g	2.62	*#g
Benzo (b) fluoranthene	mg/kg	MT/ACSE/106	AD	2.99	*#g	2.85	*#g	3.36	*#g
Benzo (k) fluoranthene	mg/kg	MT/ACSE/106	AD	1.00	*#g	0.94	*#g	0.95	*#g
Benzo (a) pyrene	mg/kg	MT/ACSE/106	AD	1.55	*#g	1.07	*#g	1.85	*#g
Indeno (1 2 3-CD) pyrene	mg/kg	MT/ACSE/106	AD	1.08	*#g	1.09	*#g	1.39	*#g
Dibenzo(a h)anthracene	mg/kg	MT/ACSE/106	AD	0.46	*#g	0.42	*#g	0.47	*#g
Benzo(g h i)perylene	mg/kg	MT/ACSE/106	AD	1.25	*#g	1.36	*#g	1.49	*#g
Total PAH	mg/kg	MT/ACSE/106	AD	32.5	*#g	23.4	*#g	28.8	*#g
Polychlorinated Biphenyls (PCBs)									
PCB (7 Congeners)	mg/kg	MT/ACSE/104	AD	< 1.00					
Subcontracted Analysis									
Total Cyanide	mg/kg	SC	SC	Attached		Attached		Attached	
Asbestos Fibre ID	SC	SC	SC	Attached		Attached		Attached	l
Total Cyanide	mg/l	SC	L	Attached		Attached			
Waters and Leachates									
Ammoniacal Nitrogen	mg/l	MT/ACSE/203	L	0.04	*	0.03	*		

ACS Testing Material Description

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE Tel 01202 628680 Fax 01202 628680

Registered Office Unit 14B Blackhill Road West Holton Heath Trading Park

Poole Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 3 of 6

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number Sample ID

26613 310809 - 16-79208

310810 - 16-79208

Clients Sample Ref.

TPPH05

TPPH06

Location / Sample Depth (m)

0.30m

0.90m

Date Sampled Time Sampled 12/12/2016

12/12/2016

Sample deviating codes Client's Sample Description

fg

ACS Testing Material Description

TOPSOIL. Grey brown SILT

MADE GROUND. Grey br own sand SILT SILT

Principal Matrix (as received)

LOAM

Units Method Result Determination AS Result AS **Anions** Sulphate mg/l MT/ACSE/204 L 14.2 Water Soluble Sulphate mg/l MT/ACSE/204 ΑD 15.1 *g 118 *g **BTEX** mg/kg MT/ACSE/101 AR 0.23 Benzene *fg Ethylbenzene mg/kg MT/ACSE/101 AR < 0.10 *fg MT/ACSE/101 AR ma/ka *fg m+p-xylene < 0.19mg/kg MT/ACSE/101 AR *fg < 0.10 o-xvlene Toluene mg/kg MT/ACSE/101 AR < 0.10 *fg MT/ACSE/101 Total BTEX mg/kg AR < 0.50 *fg Carbon TOC (Total Organic Carbon) % MT/ACSF/102 AR 3.17 0.0511 MT/ACSF/102 AR FOC % 0.0320 Loss on Ignition Loss on Ignition (440 ℃) % MT/ACSE/302 ΑD 2.0 *g Metals (Leachate) Arsenic mg/l MT/ACSF/205 L 0.007 *g MT/ACSE/205 Boron mg/l L 0.142 MT/ACSE/205 L mg/l < 0.0003 Cadmium *g MT/ACSE/205 Chromium mg/l 0.002 *g MT/ACSE/205 0.005 Copper mg/l *g MT/ACSE/202 Mercury mg/l 0.0002 *g MT/ACSE/205 Nickel mg/l < 0.0003 *g MT/ACSE/205 Lead mg/l < 0.004 *g MT/ACSE/205 0.007 Zinc mg/l *g Metals (Soil) mg/kg MT/ACSE/201 AD *# 52.4 *# Arsenic 51.3 *# Cadmium mg/kg MT/ACSE/201 AD 2.07 0.69 *# mg/kg MT/ACSE/201 AD *# 25.9 *# Chromium 53.6 mg/kg MT/ACSE/201 AD 38.7 *# 30.6 *# Copper MT/ACSE/202 AD *#g 0.29 Mercury mg/kg 0.17 *g Nickel mg/kg MT/ACSE/201 AD 37.5 *# 34.8 *# MT/ACSE/201 *# AD *# Lead mg/kg 132 18.3 mg/kg MT/ACSE/201 AD *# Zinc 236 52.1 NAM/ACSE/X08 Boron (Hot Water Soluble) mg/kg AD 0.46 0.54 **Organic Matter** Soil Organic Matter % NAM/ACSE/X29 AD 3.0 1.7 **Petroleum Hydrocarbons** Total TPH (C10-C40) mg/kg MT/ACSE/105 AR < 50.0 *#fg < 50.0 *#fg pH and Conductivity MT/ACSE/301 units pH (@ 20 °C) 7.8 L pH (@ 20 °C) units MT/ACSE/301 6.6 *fg 6.9 *fg

Head Office Registered Office Unit 14B Unit 14B

Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Poole Poole

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited Tel 01202 628680 Registered in England and Fax 01202 628680 Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 4 of 6

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number

Sample ID

26613 310809 - 16-79208

310810 - 16-79208

Clients Sample Ref.

TPPH05

TPPH06

Location / Sample Depth (m)

0.30m

0.90m

Date Sampled

12/12/2016

12/12/2016

fg

Time Sampled Sample deviating codes Client's Sample Description

Principal Matrix (as received)

ACS Testing Material Description

TOPSOIL. Grey brown SILT

MADE GROUND. Grey br own sand SILT

Determination	Units	Method		Result	AS	Result	AS
Phenois							
Total Phenol (Sum of 4 specific phenols)	mg/kg	MT/ACSE/107	AD	< 0.05		< 0.05	
Poly Aromatic Hydrocarbons							
Naphthalene	mg/kg	MT/ACSE/106	AD	0.19	*#g	0.24	*#g
Acenaphthylene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Acenaphthene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Fluorene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Phenanthrene	mg/kg	MT/ACSE/106	AD	0.28	*#g	0.14	*#g
Anthracene	mg/kg	MT/ACSE/106	AD	0.15	*#g	< 0.10	*#g
Fluoranthene	mg/kg	MT/ACSE/106	AD	0.20	*#g	< 0.10	*#g
Pyrene	mg/kg	MT/ACSE/106	AD	0.16	*#g	< 0.10	*#g
Benzo (a) anthracene	mg/kg	MT/ACSE/106	AD	0.10	*#g	< 0.10	*#g
Chrysene	mg/kg	MT/ACSE/106	AD	0.13	*#g	< 0.10	*#g
Benzo (b) fluoranthene	mg/kg	MT/ACSE/106	AD	0.17	*#g	< 0.10	*#g
Benzo (k) fluoranthene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Benzo (a) pyrene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Indeno (1 2 3-CD) pyrene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Dibenzo(a h)anthracene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Benzo(g h i)perylene	mg/kg	MT/ACSE/106	AD	< 0.10	*#g	< 0.10	*#g
Total PAH	mg/kg	MT/ACSE/106	AD	< 2.00	*#g	< 2.00	*#g
Polychlorinated Biphenyls (PCBs)							
PCB (7 Congeners)	mg/kg	MT/ACSE/104	AD			< 1.00	
Subcontracted Analysis							
Total Cyanide	mg/kg	SC	sc	Attached		Attached	
Asbestos Fibre ID	SC	SC	SC	Attached		Attached	
Total Cyanide	mg/l	SC	L			Attached	
Waters and Leachates							
Ammoniacal Nitrogen	mg/l	MT/ACSE/203	L			< 0.02	*

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park Poole

Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 5 of 6

Site Address Portishead & Pill Station Car Parks

Technical Information for Analytical Results

Analysis

* - denotes analysis covered by our UKAS accreditation

- denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition

AR = Sample tested in as-received condition.

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

Where results are less than the limit of detection, the value of 0 is used in calculations.

Deviating Codes

Deviating Samples

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample

- The date and/or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable a holding time(s). It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- No sampling time given (waters only) unable to confirm if samples are within acceptable holding times. b-
- This Test Item was received in an inappropriate container; it is possible that sample and/or analyte integrity has not been maintained and that the results are c non-representative of the original sample taken.
- d On receipt, the temperature of the sample received was found to fall outside the recommendations of EN ISO 18512:2007 Soils & Granular Wastes.
- The sample was received in a container that had been filled incorrectly which may have compromised sample and/or analyte integrity, rendering the results e – non-representative of the original sample taken.
- The delay between Sampling and Sample Receipt is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some f – deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken
- The delay between Sampling and Analysis is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.

The following Additional Deviating Sample Codes may also be used

- Insufficient sample mass/volume received for accurate quantification of this analyte.
- The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available.

Deviating Methods

- Z-A minor deviation from the Test Method was necessary but this is deemed to have had no impact on the Test Result, the legitimacy of the method validation or the Accreditation Status of the Test Method.
- Υ A significant deviation from the Test Method was necessary which is deemed to have had no impact on the Test Result, however, due to a lack of sufficient supporting validation, the Accreditation Status of the Method has been removed.
- The normal LOD of the instrument/method could not be attained, thus an elevated LOD or LOQ has been applied to the Test Data, however, the data reported W meets the requirements of the Client and does not affect compliance with the specification limit (where applicable).
- One of the QA/QC parameters failed, however, the increased implied Uncertainty associated with the Test Result meets the requirements of the Client and does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.2.9).
- The precision acceptance criteria associated with the Test Method could not be met but the Test Result fulfils the Client's objectives and the elevated Uncertainty Udoes not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.8.10).
- T -The Test Method used was supplied by the Client and involved a simple modification of a Test Method for which ACSE holds accreditation (Quality Manual, Section 18.3.8)

Head Office Unit 14B Blackhill Road West Holton Heath Trading Park

Poole Dorset BH16 6LE

Tel 01202 628680 Fax 01202 628680 Registered Office Unit 14B

Blackhill Road West Holton Heath Trading Park

Poole

Dorset BH16 6LE

ACS Environmental Testing Limited Registered in England and

Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 6 of 6

Certificate of Analysis

Certificate Number 17-88216

11-Jan-17

Client ACS Environmental

Unit 14b

Blackhill Road West

Holton Heath Trading Park

Poole Dorset BH16 6LE

Our Reference 17-88216

Client Reference (not supplied)

Order No E/16-06100/1222

Contract Title E/16-06100/1222

Description 3 Water samples.

Date Received 09-Jan-17

Date Started 09-Jan-17

Date Completed 11-Jan-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Rob Brown Business Manager

Summary of Chemical Analysis Water Samples

Our Ref 17-88216 Client Ref Contract Title E/16-06100/1222

Lab No	1107571	1107572	1107573
Sample ID	26610	26611	26614
Depth			
Other ID			
Sample Type	WATER	WATER	WATER
Sampling Date	n/s	n/s	n/s
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Inorganics						
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40

Key: n/s -not supplied. Page 2 of 3

Information in Support of the Analytical Results

Our Ref 17-88216

Client Ref

Contract E/16-06100/1222

Containers Received & Deviating Samples

		Date			Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1107571	26610 WATER		PB 1L	Sample date+time not supplied, Cyanide/Mono	
				pHoh (7 days)	
1107572	26611 WATER		PB 1L	Sample date+time not supplied, Cyanide/Mono	
				pHoh (7 days)	
1107573	26614 WATER		PB 1L	Sample date+time not supplied, Cyanide/Mono	
				pHoh (7 days)	

Key: P-Plastic B-Bottle

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate of Analysis

Certificate Number 16-87661

06-Jan-17

Client ACS Environmental

Unit 14b

Blackhill Road West

Holton Heath Trading Park

Poole Dorset BH16 6LE

Our Reference 16-87661

Client Reference (not supplied)

Order No E/16-06100/1222

Contract Title (not supplied)

Description 5 Misc samples.

Date Received 23-Dec-16

Date Started 23-Dec-16

Date Completed 06-Jan-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the scope of UKAS accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. Observations and interpretations are outside the scope of ISO 17025. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Rob Brown Business Manager

Summary of Chemical Analysis Misc Samples

Our Ref 16-87661 Client Ref Contract Title

Lab No	1105079	1105080	1105081	1105082	1105083
Sample ID	26610	26611	26612	26613	26614
Depth					
Other ID					
Sample Type	MISC	MISC	MISC	MISC	MISC
Sampling Date	12/12/16	13/12/16	13/12/16	12/12/16	12/12/16
Sampling Time	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units					
Inorganics								
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Information in Support of the Analytical Results

Our Ref 16-87661 Client Ref Contract

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1105079	26610 MISC	12/12/16	PG		
1105080	26611 MISC	13/12/16	PG		
1105081	26612 MISC	13/12/16	PG		
1105082	26613 MISC	12/12/16	PG		
1105083	26614 MISC	12/12/16	PG		

Key: P-Plastic G-Bag

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Our Ref: J113204 Rev. 2 FI: 5 Your Ref: E/16-06100/1221

Date: 03/01/2017

ENVIROCHEM

Analytical Laboratories Ltd.

12 The Gardens Broadcut, Fareham Hampshire PO16 8SS

Tel: (01329) 287777 Fax: (01329) 287755 www.envirochem.co.uk office@envirochem.co.uk

Asbestos Fibre Identification Report

ACS Environmental Testing Ltd **Client:**

Unit 14B Blackhill Road West, Holton Heath Trading Park, Poole, Dorset, BH16 6LE

Site Address: 26610, 26611, 26612, 26613, 26614,

Sampled By: ACS Environmental Testing Ltd

Date sampled/received: 23rd December 2016 **Date analysed:** 29th December 2016 Analyst/s: Ewelina Kowalczyk Pariyar

Analysis Location: 12 The Gardens, Broadcut, Fareham, Hampshire, PO16 8SS

ANALYTICAL PROCEDURE

Fibre identification was carried out in accordance with the documented `in-house' methods based on the HSE Guidance Note HSG 248. These employed stereo microscopy, polarized microscopy and dispersion staining techniques.

RESULTS

Sample No.	Sample Ref.	Location	Asbestos Detected	Asbestos Type
26610	BS399026	Sand	No	
26611	BS399027	Sand	No	
26612	BS399028	Sand	No	
26613	BS399029	Loam	No	

- 1. Sample(s) were examined for the presence of 6 types of asbestos fibres: crocidolite (blue), amosite (brown), chrysotile (white), anthophyllite, actinolite and tremolite.

 2. Samples collected by the client are evaluated using information provided by the client. For samples collected by the client the date of receipt is deemed to be the same as the date sampled.
- Envirochem is a UKAS accredited laboratory for sampling and identification of asbestos containing materials.
 Comments, observations and opinions are outside the scope of UKAS accreditation.
- 5. The analytical method in the HSG248 does not quantify the amount of asbestos present, therefore UKAS accreditation does not permit quantification. 6. If, during fibre identification, only 1 or 2 fibres are seen and identified as asbestos, then the term 'trace asbestos identified' is used.

PRINT NAME: Mathew Griffiths Authorised signatory

Our Ref: J113204 Rev. 2 FI: 5 Your Ref: E/16-06100/1221

Date: 03/01/2017

ENVIROCHEM

Analytical Laboratories Ltd.

12 The Gardens Broadcut, Fareham Hampshire PO16 8SS

Tel: (01329) 287777 Fax: (01329) 287755 www.envirochem.co.uk office@envirochem.co.uk

Asbestos Fibre Identification Report

ACS Environmental Testing Ltd **Client:**

Unit 14B Blackhill Road West, Holton Heath Trading Park, Poole, Dorset, BH16 6LE

Site Address: 26610, 26611, 26612, 26613, 26614,

Sampled By: ACS Environmental Testing Ltd

Date sampled/received: 23rd December 2016 **Date analysed:** 29th December 2016 Analyst/s: Ewelina Kowalczyk Pariyar

Analysis Location: 12 The Gardens, Broadcut, Fareham, Hampshire, PO16 8SS

ANALYTICAL PROCEDURE

Fibre identification was carried out in accordance with the documented `in-house' methods based on the HSE Guidance Note HSG 248. These employed stereo microscopy, polarized microscopy and dispersion staining techniques.

RESULTS

Sample No.	Sample Ref.	Location	Asbestos Detected	Asbestos Type
26614	BS399030	Silt	No	

- 1. Sample(s) were examined for the presence of 6 types of asbestos fibres: crocidolite (blue), amosite (brown), chrysotile (white), anthophyllite, actinolite and tremolite.

 2. Samples collected by the client are evaluated using information provided by the client. For samples collected by the client the date of receipt is deemed to be the same as the date sampled.
- Envirochem is a UKAS accredited laboratory for sampling and identification of asbestos containing materials.
 Comments, observations and opinions are outside the scope of UKAS accreditation.
- 5. The analytical method in the HSG248 does not quantify the amount of asbestos present, therefore UKAS accreditation does not permit quantification. 6. If, during fibre identification, only 1 or 2 fibres are seen and identified as asbestos, then the term 'trace asbestos identified' is used.

PRINT NAME: Mathew Griffiths Authorised signatory

FINAL ANALYTICAL TEST REPORT SUPPLEMENT TO TEST REPORT 15/06221/1

Envirolab Job Number: 15/06221

Issue Number: 2 **Date:** 29 October, 2015

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol UK

BS3 4EB

Project Manager: enviro@soils.co.uk/lain Foster/Lisa Frost/Mike Add

Project Name: Arup Metrowest

Project Ref: 730673
Order No: N/A
Date Samples Received: 14/09/15
Date Instructions Received: 23/09/15
Date Analysis Completed: 28/10/15

Prepared by:

Approved by:

Melanie Marshall

Laboratory Coordinator

lain Haslock

Analytical Consultant

					Onene i io	ect Ret: 73	0070			
Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТЗ	CPT4	СРТ6	BH1	BH2	внз	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		-
Sample Type	Soil - ES	Soil - ES	Soil - ES		Method ref					
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5 A	Units	Meth
% Stones >10mm _A #	24.0	53.2	38.7	49.7	13.5	48.3	4.0	7.4	% w/w	A-T-044
pH _D ^{M#}	8.50	8.53	8.47	8.39	10.11	8.62	8.65	8.69	рН	A-T-031s
pH BRE _D ^{M#}	-	-	-	-	-	8.68	-	-	рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	<0.01	<0.01	<0.01	<0.01	0.12	0.01	0.03	0.03	g/l	A-T-026s
Sulphate BRE (water sol 2:1) _D ^{M#}	-	-	-	-	-	11	-	-	mg/l	A-T-026s
Phenois - Total by HPLC _A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	A-T-050s
Arsenic _D ^{M#}	12	3	9	6	28	5	12	15	mg/kg	A-T-024s
Boron (water soluble) _D ^{M#}	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	mg/kg	A-T-027s
Cadmium _D ^{M#}	<0.5	0.9	0.9	1.3	8.9	<0.5	1.2	0.8	mg/kg	A-T-024s
Copper _D ^{M#}	46	14	43	26	99	8	72	46	mg/kg	A-T-024s
Chromium _D ^{M#}	15	9	10	17	402	8	18	20	mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	<1	mg/kg	A-T-040s
Lead _D ^{M#}	255	22	128	42	616	15	91	102	mg/kg	A-T-024s
Mercury _D	0.33	<0.17	0.53	0.28	<0.17	0.34	0.28	0.24	mg/kg	A-T-024s
Nickel _D ^{M#}	20	8	15	33	35	7	22	18	mg/kg	A-T-024s
Zinc _D ^{M#}	590	84	313	134	1370	41	224	529	mg/kg	A-T-024s

_						,001 11011 70				
Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТЗ	CPT4	СРТ6	BH1	BH2	ВН3	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		-
Sample Type	Soil - ES	Soil - ES	Soil - ES		Method ref					
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5A	Units	Meth
Leachate Prep BS EN 12457-1 (2:1) _A	*	*	*	*	*	*	*	*		A-T-046
pH (leachable) _A #	7.90	7.82	7.56	7.19	8.82	7.81	8.35	8.14	pН	A-T-031w
Sulphate (leachable) _A #	<1.00	<1.00	<1.00	<1.00	45.97	14.78	<1.00	18.39	mg/l	A-T-026w
Arsenic (leachable) _A #	2	3	7	5	29	1	4	7	μg/l	A-T-025w
Boron (leachable) _A #	12	25	21	40	40	61	<10	38	μg/l	A-T-025w
Cadmium (leachable) _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/l	A-T-025w
Copper (leachable) _A #	6	5	5	11	4	2	5	6	μg/l	A-T-025w
Chromium (leachable) _A #	<1	<1	<1	<1	28	<1	<1	3	μg/l	A-T-025w
Chromium (hexavalent) (leachable) _A	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/l	A-T-040w
Lead (leachable) _A #	4	4	1	8	5	<1	<1	2	μg/l	A-T-025w
Mercury (leachable) _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	μg/l	A-T-025w
Nickel (leachable) _A #	<1	2	3	2	<1	<1	<1	<1	μg/l	A-T-025w
Zinc (leachable) _A #	7	24	9	20	2	<1	<1	4	μg/l	A-T-025w

Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТ3	CPT4	СРТ6	BH1	BH2	внз	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		*
Sample Type	Soil - ES	Soil - ES		Method ref						
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5A	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	NAD	NAD		A-T-045						
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	N/A		Gravimetry						

					,	ect net. 73				
Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТ3	CPT4	СРТ6	BH1	BH2	внз	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		.
Sample Type	Soil - ES	Soil - ES	Soil - ES		Method ref					
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5A	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	0.05	<0.01	<0.01	<0.01	0.01	<0.01	0.01	<0.01	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	0.04	0.01	0.03	0.01	0.07	<0.01	0.02	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	0.20	0.03	0.07	0.05	0.35	0.03	0.07	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.73	0.09	0.20	0.15	1.28	0.10	0.67	0.07	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.68	0.11	0.30	0.16	0.92	0.09	0.91	0.10	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	1.68	0.21	0.69	0.36	1.73	0.19	1.27	0.14	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.30	0.06	0.22	0.09	0.39	0.05	0.61	0.09	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.38	<0.07	0.15	0.08	0.57	<0.07	0.34	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	1.28	0.15	0.42	0.29	1.22	0.15	0.87	0.11	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.11	<0.04	0.07	<0.04	0.11	<0.04	0.13	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	1.56	0.20	0.40	0.36	2.66	0.18	1.14	0.15	mg/kg	A-T-019s
Fluorene _A ^{M#}	0.04	<0.01	0.01	<0.01	0.14	<0.01	<0.01	<0.01	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.38	0.07	0.24	0.11	0.54	0.07	0.63	0.07	mg/kg	A-T-019s
Naphthalene _A ^{M#}	0.20	<0.03	0.05	0.03	0.05	<0.03	<0.03	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.70	0.07	0.15	0.11	1.41	0.05	0.31	0.07	mg/kg	A-T-019s
Pyrene _A ^{M#}	1.56	0.18	0.38	0.35	1.92	0.18	1.08	0.13	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	9.90	1.25	3.37	2.17	13.4	1.15	8.06	0.93	mg/kg	A-T-019s

1						ect her. 73				
Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТЗ	CPT4	СРТ6	BH1	BH2	внз	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		
Sample Type	Soil - ES	Soil - ES	Soil - ES		od re					
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5A	Units	Method ref
svoc										
Hexachlorobenzene _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Diethyl phthalate _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Dimethyl phthalate _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Dibenzofuran _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Carbazole _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Butylbenzyl phthalate A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Bis(2-ethylhexyl)phthalate _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Bis(2-chloroethoxy)methane _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Bis(2-chloroethyl)ether _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
4-Nitrophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
4-Methylphenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
4-Chloro-3-methylphenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2-Nitrophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2-Methylphenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2-Chlorophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2,6-Dinitrotoluene _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2,4-Dinitrotoluene _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2,4-Dimethylphenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2,4-Dichlorophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2,4,6-Trichlorophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2,4,5-Trichlorophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2-Chloronaphthalene _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2-Methylnaphthalene _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Bis(2-chloroisopropyl)ether _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
2,4-Dinitrophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
4,6-Dinitro-2-methylphenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Phenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Pentachlorophenol _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
n-Nitroso-n-dipropylamine _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
n-Dioctylphthalate _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
n-Dibutylphthalate _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Nitrobenzene _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s

Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТ3	CPT4	СРТ6	BH1	BH2	ВН3	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		.
Sample Type	Soil - ES	Soil - ES		Method ref						
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5A	Units	Meth
Isophorone _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Hexachloroethane _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Hexachlorocyclopentadiene _A	<100	<100	<100	<100	<100	<100	<100	<100	μg/kg	A-T-052s
Perylene _A	498	240	415	<100	237	125	333	271	μg/kg	A-T-052s

<u></u>					Chefft F10	ect Ref: 73				
Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТ3	CPT4	СРТ6	BH1	BH2	ВН3	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		.
Sample Type	Soil - ES	Soil - ES	Soil - ES		od re					
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5A	Units	Method ref
voc										
Dichlorodifluoromethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Chloromethane _A #	<1	11	<1	13	6	<1	<1	10	μg/kg	A-T-006s
Vinyl Chloride _A #	<1	<1	<1	<1	<1	<1	<1	7	μg/kg	A-T-006s
Bromomethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Chloroethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Trichlorofluoromethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,1-Dichloroethene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Carbon Disulphide _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Dichloromethane A	<5	<5	<5	<5	27	<5	<5	<5	μg/kg	A-T-006s
trans 1,2-Dichloroethene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,1-Dichloroethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
cis 1,2-Dichloroethene,#	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
2,2-Dichloropropane _A #	<1	<1	ব	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Bromochloromethane _A #	<5	<5	<5	<5	<5	<5	<5	<5	μg/kg	A-T-006s
Chloroform _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,1,1-Trichloroethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,1-Dichloropropene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Carbon Tetrachloride _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,2-Dichloroethane _A #	<2	<2	<2	<2	<2	<2	<2	<2	μg/kg	A-T-006s
Benzene A#	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Trichloroethene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,2-Dichloropropane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Dibromomethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Bromodichloromethane _A #	<10	<10	<10	<10	<10	<10	<10	<10	μg/kg	A-T-006s
cis 1,3-Dichloropropene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Toluene A#	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
trans 1,3-Dichloropropene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,1,2-Trichloroethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,3-Dichloropropane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Tetrachloroethene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Dibromochloromethane _A #	<3	<3	<3	<3	<3	<3	<3	<3	μg/kg	A-T-006s
1,2-Dibromoethane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s

					Cheffic F10	ect Ret: 73	0073			
Lab Sample ID	15/06221/1	15/06221/2	15/06221/3	15/06221/4	15/06221/5	15/06221/6	15/06221/12	15/06221/13		
Client Sample No	1	1	1	1	2	4	1	1		
Client Sample ID	CPT1	СРТ3	CPT4	СРТ6	BH1	BH2	ВН3	внзв		
Depth to Top	0.60	0.20	0.50	0.30	0.50	1.00	0.20	0.30		
Depth To Bottom										
Date Sampled	09-Sep-15	08-Sep-15	08-Sep-15	07-Sep-15			17-Sep-15	17-Sep-15		<u>.</u>
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES		od re				
Sample Matrix Code	4AE	4A	4A	4AE	4A	6AE	4AE	5A	Units	Method ref
Chlorobenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,1,1,2-Tetrachloroethane _A	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Ethylbenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
m & p Xylene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
o-Xylene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Styrene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Bromoform _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Isopropylbenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,1,2,2-Tetrachloroethane _A	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,2,3-Trichloropropane _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
Bromobenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
n-Propylbenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
2-Chlorotoluene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,3,5-Trimethylbenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
4-Chlorotoluene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
tert-Butylbenzene _A #	<2	<2	<2	<2	<2	<2	<2	<2	μg/kg	A-T-006s
1,2,4-Trimethylbenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
sec-Butylbenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
4-Isopropyltoluene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,3-Dichlorobenzene _A	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,4-Dichlorobenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
n-Butylbenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,2-Dichlorobenzene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A	<2	<2	<2	<2	<2	<2	<2	<2	μg/kg	A-T-006s
1,2,4-Trichlorobenzene _A	<3	<3	<3	<3	<3	<3	<3	<3	μg/kg	A-T-006s
Hexachlorobutadiene _A #	<1	<1	<1	<1	<1	<1	<1	<1	μg/kg	A-T-006s
1,2,3-Trichlorobenzene _A	<3	<3	<3	<3	<3	<3	<3	<3	μg/kg	A-T-006s

Lab Sample ID 15/06221/1 15/06221/2 15/06221/3 15/06221/4 15/06221/5 15/06221/6 15/06221/12 15/06221/13 Client Sample No 1 1 1 1 2 4 1 1 Client Sample ID CPT1 CPT3 CPT4 CPT6 BH1 BH2 BH3 BH3B Depth to Top 0.60 0.20 0.50 0.30 0.50 1.00 0.20 0.30 Depth To Bottom Date Sampled 09-Sep-15 08-Sep-15 07-Sep-15 17-Sep-15 17-Sep-15 17-Sep-15	d ref
Client Sample ID CPT1 CPT3 CPT4 CPT6 BH1 BH2 BH3 BH3B Depth to Top 0.60 0.20 0.50 0.30 0.50 1.00 0.20 0.30 Depth To Bottom 0.50 0.50 0.50 0.50 0.50 0.50 0.30 0.50 0.50 0.30 0.50 0.50 <td< td=""><td>d ref</td></td<>	d ref
Depth to Top 0.60 0.20 0.50 0.30 0.50 1.00 0.20 0.30 Depth To Bottom	d ref
Depth To Bottom	d ref
	d ref
Date Sampled 09-Sep-15 08-Sep-15 08-Sep-15 07-Sep-15 17-Sep-15 17-Sep-15	d ref
	_ e
Sample Type Soil - ES	ŏ
Sample Matrix Code 4AE 4A 4A 4AE 4A 6AE 4AE 5A	Method ref
TPH CWG	
Ali >C5-C6 _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
Ali >C6-C8 _A [#] <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
Ali >C8-C10 _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
Ali >C10-C12 _A [#] <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg	A-T-023s
Ali >C12-C16 _A # <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 do.1 <0.1 mg/kg	A-T-023s
Ali >C16-C21 _A # <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 do.1 <0.1 mg/kg	A-T-023s
Ali >C21-C35 _A # <0.1 <0.1 <0.1 3.0 <0.1 <0.1 mg/kg	A-T-023s
Total Aliphatics _A <0.1 <0.1 <0.1 <0.1 3.0 <0.1 <0.1 mg/kg	A-T-022+23s
Aro >C5-C7 _A [#] <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
Aro >C7-C8 _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
Aro >C8-C9 _A [#] <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
Aro >C9-C10 _A [#] <0.01 <0.01 <0.01 <0.01 <0.01 0.03 <0.01 mg/kg	A-T-022s
Aro >C10-C12 _A # <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg	A-T-023s
Aro >C12-C16 _A # <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg	A-T-023s
Aro >C16-C21 _A # 2.3 0.2 0.7 0.3 1.7 <0.1 0.4 <0.1 mg/kg	A-T-023s
Aro >C21-C35 _A # 3.4 0.7 0.3 0.6 0.3 <0.1 0.5 <0.1 mg/kg	A-T-023s
Total Aromatics _A 5.8 0.9 1.1 0.9 1.9 <0.1 0.9 <0.1 mg/kg	A-T-022+23s
TPH (Ali & Aro) _A 5.8 0.9 1.1 0.9 4.9 <0.1 0.9 <0.1 mg/kg	A-T-022+23s
BTEX - Benzene _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
BTEX - Toluene _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
BTEX - Ethyl Benzene _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
BTEX - m & p Xylene _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
BTEX - o Xylene _A # <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s
MTBE _A [#] <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 mg/kg	A-T-022s

				0	ject nei. 73			
Lab Sample ID	15/06221/14	15/06221/15						
Client Sample No	2	1						
Client Sample ID	FDTP1	FDTP2						
Depth to Top	0.90	0.30						
Depth To Bottom								
Date Sampled	16-Sep-15	16-Sep-15						+
Sample Type	Soil - ES	Soil - ES						Method ref
Sample Matrix Code	5AE	6AE					Units	Meth
% Stones >10mm _A #	13.6	<0.1					% w/w	A-T-044
pH _D ^{M#}	8.44	8.69					рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.06	<0.01					g/l	A-T-026s
Phenois - Total by HPLC _A	<0.2	<0.2					mg/kg	A-T-050s
Arsenic _D ^{M#}	9	9					mg/kg	A-T-024s
Boron (water soluble) _D ^{M#}	1.1	<1.0					mg/kg	A-T-027s
Cadmium _D ^{M#}	<0.5	1.4					mg/kg	A-T-024s
Copper _D ^{M#}	23	30					mg/kg	A-T-024s
Chromium _D ^{M#}	22	19					mg/kg	A-T-024s
Chromium (hexavalent) _D	<1	<1					mg/kg	A-T-040s
Lead _D ^{M#}	48	136					mg/kg	A-T-024s
Mercury _D	<0.17	0.59					mg/kg	A-T-024s
Nickel _D ^{M#}	19	15					mg/kg	A-T-024s
Zinc _D ^{M#}	93	182					mg/kg	A-T-024s

_				0.101.11.10	jeet Hen. 70			
Lab Sample ID	15/06221/14	15/06221/15						
Client Sample No	2	1						
Client Sample ID	FDTP1	FDTP2						
Depth to Top	0.90	0.30						
Depth To Bottom								
Date Sampled	16-Sep-15	16-Sep-15						<u>.</u>
Sample Type	Soil - ES	Soil - ES						Method ref
Sample Matrix Code	5AE	6AE					Units	Meth
Leachate Prep BS EN 12457-1 (2:1) _A	*	*						A-T-046
pH (leachable) _A #	7.71	7.89					рН	A-T-031w
Sulphate (leachable) _A #	59.94	14.86					mg/l	A-T-026w
Arsenic (leachable) _A #	2	11					μg/l	A-T-025w
Boron (leachable) _A #	222	48					μg/l	A-T-025w
Cadmium (leachable) _A #	<1	<1					μg/l	A-T-025w
Copper (leachable) _A #	3	6					μg/l	A-T-025w
Chromium (leachable) _A #	<1	5					μg/l	A-T-025w
Chromium (hexavalent) (leachable) _A	<0.05	<0.05					mg/l	A-T-040w
Lead (leachable) _A #	<1	7					μg/l	A-T-025w
Mercury (leachable) _A #	<0.1	<0.1					μg/l	A-T-025w
Nickel (leachable) _A #	<1	<1					μg/l	A-T-025w
Zinc (leachable) _A #	<1	3					μg/l	A-T-025w

Lab Sample ID	15/06221/14	15/06221/15					
Client Sample No	2	1					
Client Sample ID	FDTP1	FDTP2					
Depth to Top	0.90	0.30					
Depth To Bottom							
Date Sampled	16-Sep-15	16-Sep-15					*
Sample Type	Soil - ES	Soil - ES				,	Method ref
Sample Matrix Code	5AE	6AE				Units	Meth
Asbestos in Soil (inc. matrix)							
Asbestos in soil _A #	NAD	Chrysotile					A-T-045
Asbestos Matrix (visual) _A	-	Board					A-T-045
Asbestos Matrix (microscope) _A	-	Loose fibres					A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A	No					Gravimetry
Asbestos in Soil Quantification % Composition (Hand Picking & Weighing)							
Asbestos in soil % composition (hand picking and weighing) _D	-	0.019				% w/w	A-T-054

				Client Pro	ect fiel. 70	0073		
Lab Sample ID	15/06221/14	15/06221/15						
Client Sample No	2	1						
Client Sample ID	FDTP1	FDTP2						
Depth to Top	0.90	0.30						
Depth To Bottom								
Date Sampled	16-Sep-15	16-Sep-15						*
Sample Type	Soil - ES	Soil - ES						Method ref
Sample Matrix Code	5AE	6AE					Units	Meth
PAH 16								
Acenaphthene _A ^{M#}	0.12	0.20					mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	0.06	0.44					mg/kg	A-T-019s
Anthracene _A ^{M#}	0.65	1.51					mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	2.10	5.89					mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	1.85	6.05					mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	2.42	7.87					mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.99	3.02					mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.69	2.36					mg/kg	A-T-019s
Chrysene _A ^{M#}	2.27	6.85					mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.27	0.78					mg/kg	A-T-019s
Fluoranthene _A ^{M#}	4.32	12					mg/kg	A-T-019s
Fluorene _A ^{M#}	0.15	0.46					mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	1.06	3.52					mg/kg	A-T-019s
Naphthalene _A ^{M#}	0.05	0.32					mg/kg	A-T-019s
Phenanthrene _A ^{M#}	2.75	6.19					mg/kg	A-T-019s
Pyrene _A ^{M#}	3.57	10.3					mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	23.3	67.8	 				mg/kg	A-T-019s

1				Onem 110	ect Ref: 73			
Lab Sample ID	15/06221/14	15/06221/15						
Client Sample No	2	1						
Client Sample ID	FDTP1	FDTP2						
Depth to Top	0.90	0.30						
Depth To Bottom								
Date Sampled	16-Sep-15	16-Sep-15						
Sample Type	Soil - ES	Soil - ES						od re
Sample Matrix Code	5AE	6AE					Units	Method ref
svoc								
Hexachlorobenzene _A	<100	<100					μg/kg	A-T-052s
Diethyl phthalate _A	<100	<100					μg/kg	A-T-052s
Dimethyl phthalate _A	<100	<100					μg/kg	A-T-052s
Dibenzofuran _A	<100	188					μg/kg	A-T-052s
Carbazole _A	<100	527					μg/kg	A-T-052s
Butylbenzyl phthalate A	<100	<100					μg/kg	A-T-052s
Bis(2-ethylhexyl)phthalate _A	<100	<100					μg/kg	A-T-052s
Bis(2-chloroethoxy)methane _A	<100	<100					μg/kg	A-T-052s
Bis(2-chloroethyl)ether _A	<100	<100					μg/kg	A-T-052s
4-Nitrophenol _A	<100	<100					μg/kg	A-T-052s
4-Methylphenol _A	<100	<100					μg/kg	A-T-052s
4-Chloro-3-methylphenol _A	<100	<100					μg/kg	A-T-052s
2-Nitrophenol _A	<100	<100					μg/kg	A-T-052s
2-Methylphenol _A	<100	<100					μg/kg	A-T-052s
2-Chlorophenol _A	<100	<100					μg/kg	A-T-052s
2,6-Dinitrotoluene _A	<100	<100					μg/kg	A-T-052s
2,4-Dinitrotoluene _A	<100	<100					μg/kg	A-T-052s
2,4-Dimethylphenol _A	<100	<100					μg/kg	A-T-052s
2,4-Dichlorophenol _A	<100	<100					μg/kg	A-T-052s
2,4,6-Trichlorophenol _A	<100	<100					μg/kg	A-T-052s
2,4,5-Trichlorophenol _A	<100	<100					μg/kg	A-T-052s
2-Chloronaphthalene _A	<100	<100					μg/kg	A-T-052s
2-Methylnaphthalene _A	<100	<100					μg/kg	A-T-052s
Bis(2-chloroisopropyl)ether _A	<100	<100					μg/kg	A-T-052s
2,4-Dinitrophenol _A	<100	<100					μg/kg	A-T-052s
4,6-Dinitro-2-methylphenol _A	<100	<100					μg/kg	A-T-052s
Phenol A	<100	<100					μg/kg	A-T-052s
Pentachlorophenol _A	<100	<100					μg/kg	A-T-052s
n-Nitroso-n-dipropylamine _A	<100	<100					μg/kg	A-T-052s
n-Dioctylphthalate _A	<100	1090					μg/kg	A-T-052s
n-Dibutylphthalate _A	<100	<100					μg/kg	A-T-052s
Nitrobenzene _A	<100	<100					μg/kg	A-T-052s

Lab Sample ID	15/06221/14	15/06221/15					
Client Sample No	2	1					
Client Sample ID	FDTP1	FDTP2					
Depth to Top	0.90	0.30					
Depth To Bottom							
Date Sampled	16-Sep-15	16-Sep-15					J.
Sample Type	Soil - ES	Soil - ES					Method ref
Sample Matrix Code	5AE	6AE				Units	Meth
Isophorone _A	<100	<100				μg/kg	A-T-052s
Hexachloroethane _A	<100	<100				μg/kg	A-T-052s
Hexachlorocyclopentadiene _A	<100	<100				μg/kg	A-T-052s
Perylene _A	196	1690				μg/kg	A-T-052s

	1	T	1	1	Onemi 10	ect Ref: 73	0070	1	1	
Lab Sample ID	15/06221/14	15/06221/15								
Client Sample No	2	1								
Client Sample ID	FDTP1	FDTP2								
Depth to Top	0.90	0.30								
Depth To Bottom										
Date Sampled	16-Sep-15	16-Sep-15								ţ
Sample Type	Soil - ES	Soil - ES								od re
Sample Matrix Code	5AE	6AE							Units	Method ref
voc										
Dichlorodifluoromethane _A #	<1	<1							μg/kg	A-T-006s
Chloromethane _A #	<1	<1							μg/kg	A-T-006s
Vinyl Chloride _A #	<1	<1							μg/kg	A-T-006s
Bromomethane _A #	<1	<1							μg/kg	A-T-006s
Chloroethane _A #	<1	<1							μg/kg	A-T-006s
Trichlorofluoromethane _A #	<1	<1							μg/kg	A-T-006s
1,1-Dichloroethene _A #	<1	<1							μg/kg	A-T-006s
Carbon Disulphide _A #	<1	<1							μg/kg	A-T-006s
Dichloromethane A	<5	<5							μg/kg	A-T-006s
trans 1,2-Dichloroethene _A #	<1	<1							μg/kg	A-T-006s
1,1-Dichloroethane _A #	<1	<1							μg/kg	A-T-006s
cis 1,2-Dichloroethene _A #	<1	<1							μg/kg	A-T-006s
2,2-Dichloropropane _A #	<1	<1							μg/kg	A-T-006s
Bromochloromethane _A #	<5	<5							μg/kg	A-T-006s
Chloroform _A #	<1	<1							μg/kg	A-T-006s
1,1,1-Trichloroethane _A #	<1	<1							μg/kg	A-T-006s
1,1-Dichloropropene _A #	<1	<1							μg/kg	A-T-006s
Carbon Tetrachloride _A #	<1	<1							μg/kg	A-T-006s
1,2-Dichloroethane _A #	<2	<2							μg/kg	A-T-006s
Benzene A#	<1	<1							μg/kg	A-T-006s
Trichloroethene _A #	<1	<1							μg/kg	A-T-006s
1,2-Dichloropropane _A #	<1	<1							μg/kg	A-T-006s
Dibromomethane _A #	<1	<1							μg/kg	A-T-006s
Bromodichloromethane _A #	<10	<10							μg/kg	A-T-006s
cis 1,3-Dichloropropene _A #	<1	<1							μg/kg	A-T-006s
Toluene A#	<1	<1							μg/kg	A-T-006s
trans 1,3-Dichloropropene _A #	<1	<1							μg/kg	A-T-006s
1,1,2-Trichloroethane _A #	<1	<1							μg/kg	A-T-006s
1,3-Dichloropropane _A #	<1	<1							μg/kg	A-T-006s
Tetrachloroethene _A #	<1	<1							μg/kg	A-T-006s
Dibromochloromethane _A #	<3	<3							μg/kg	A-T-006s
1,2-Dibromoethane _A #	<1	<1							μg/kg	A-T-006s

				Client Proj	 	 	
Lab Sample ID	15/06221/14	15/06221/15					
Client Sample No	2	1					
Client Sample ID	FDTP1	FDTP2					
Depth to Top	0.90	0.30					
Depth To Bottom							
Date Sampled	16-Sep-15	16-Sep-15					_
Sample Type	Soil - ES	Soil - ES					Method ref
Sample Matrix Code	5AE	6AE				Units	Meth
Chlorobenzene _A #	<1	<1				μg/kg	A-T-006s
1,1,1,2-Tetrachloroethane _A	<1	<1				μg/kg	A-T-006s
Ethylbenzene _A #	<1	<1				μg/kg	A-T-006s
m & p Xylene _A #	<1	<1				μg/kg	A-T-006s
o-Xylene _A #	<1	<1				μg/kg	A-T-006s
Styrene _A #	<1	<1				μg/kg	A-T-006s
Bromoform _A #	<1	<1				μg/kg	A-T-006s
Isopropylbenzene _A #	<1	<1				μg/kg	A-T-006s
1,1,2,2-Tetrachloroethane _A	<1	<1				μg/kg	A-T-006s
1,2,3-Trichloropropane _A #	<1	<1				μg/kg	A-T-006s
Bromobenzene _A #	<1	<1				μg/kg	A-T-006s
n-Propylbenzene _A #	<1	<1				μg/kg	A-T-006s
2-Chlorotoluene _A #	<1	<1	V			μg/kg	A-T-006s
1,3,5-Trimethylbenzene _A #	<1	<1				μg/kg	A-T-006s
4-Chlorotoluene _A #	<1	<1				μg/kg	A-T-006s
tert-Butylbenzene _A #	<2	<2	7			μg/kg	A-T-006s
1,2,4-Trimethylbenzene _A #	<1	<1				μg/kg	A-T-006s
sec-Butylbenzene _A #	<1	<1				μg/kg	A-T-006s
4-Isopropyltoluene _A #	<1	<1				μg/kg	A-T-006s
1,3-Dichlorobenzene _A	<1	<1				μg/kg	A-T-006s
1,4-Dichlorobenzene _A #	<1	<1				μg/kg	A-T-006s
n-Butylbenzene _A #	<1	<1				μg/kg	A-T-006s
1,2-Dichlorobenzene _A #	<1	<1				μg/kg	A-T-006s
1,2-Dibromo-3-chloropropane _A	<2	<2				μg/kg	A-T-006s
1,2,4-Trichlorobenzene _A	<3	<3				μg/kg	A-T-006s
Hexachlorobutadiene _A #	<1	<1				μg/kg	A-T-006s
1,2,3-Trichlorobenzene _A	<3	<3				μg/kg	A-T-006s

				Chefft F10	ject Ref: 73	0070		
Lab Sample ID	15/06221/14	15/06221/15						
Client Sample No	2	1						
Client Sample ID	FDTP1	FDTP2						
Depth to Top	0.90	0.30						
Depth To Bottom								
Date Sampled	16-Sep-15	16-Sep-15						-
Sample Type	Soil - ES	Soil - ES						od re
Sample Matrix Code	5AE	6AE					Units	Method ref
TPH CWG								
Ali >C5-C6 _A #	<0.01	<0.01					mg/kg	A-T-022s
Ali >C6-C8 _A #	<0.01	<0.01					mg/kg	A-T-022s
Ali >C8-C10 _A #	<0.01	<0.01					mg/kg	A-T-022s
Ali >C10-C12 _A #	<0.1	<0.1					mg/kg	A-T-023s
Ali >C12-C16 _A #	<0.1	<0.1					mg/kg	A-T-023s
Ali >C16-C21 _A #	<0.1	<0.1					mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1					mg/kg	A-T-023s
Total Aliphatics _A	<0.1	<0.1					mg/kg	A-T-022+23s
Aro >C5-C7 _A #	<0.01	<0.01					mg/kg	A-T-022s
Aro >C7-C8 _A #	<0.01	<0.01					mg/kg	A-T-022s
Aro >C8-C9 _A #	<0.01	<0.01					mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01					mg/kg	A-T-022s
Aro >C10-C12 _A #	<0.1	<0.1					mg/kg	A-T-023s
Aro >C12-C16 _A #	<0.1	<0.1					mg/kg	A-T-023s
Aro >C16-C21 _A #	2.2	12.3					mg/kg	A-T-023s
Aro >C21-C35 _A #	0.6	36.1					mg/kg	A-T-023s
Total Aromatics _A	2.8	48.5					mg/kg	A-T-022+23s
TPH (Ali & Aro) _A	2.8	48.5					mg/kg	A-T-022+23s
BTEX - Benzene _A #	<0.01	<0.01					mg/kg	A-T-022s
BTEX - Toluene _A #	<0.01	<0.01		_			mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	<0.01					mg/kg	A-T-022s
BTEX - m & p Xylene _A #	<0.01	<0.01					mg/kg	A-T-022s
BTEX - o Xylene _A #	<0.01	<0.01		_			mg/kg	A-T-022s
MTBE _A #	<0.01	<0.01	 				mg/kg	A-T-022s

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 15/07765

Issue Number: 1 **Date:** 14 December, 2015

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol

UK

BS3 4EB

Project Manager: enviro@soils.co.uk/lain Foster

Project Name: Metrowest
Project Ref: 730673
Order No: N/A
Date Samples Received: 26/11/15
Date Instructions Received: 02/12/15

Date Analysis Completed: 11/12/15

Prepared by: Approved by:

Lianne Bromiley Senior Client Manager

lain Haslock

Analytical Consultant

					Oneme 1 10	ject Ret: 73	0073		
Lab Sample ID	15/07765/1	15/07765/2	15/07765/3	15/07765/4	15/07765/5	15/07765/6			
Client Sample No	1	2	1	1	1	1			
Client Sample ID	BH1	BH1	BH2	внзв	BH4	ВН6			
Depth to Top	12.00	3.00	13.00	9.00	6.00	10.00			
Depth To Bottom									
Date Sampled	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15			*
Sample Type	Water - EW			Method ref					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Meth
pH (w) _A #	8.63	8.20	8.47	7.86	8.07	7.82		рН	A-T-031w
Electrical conductivity @ 20degC (w) _A #	6250	2590	9190	640	599	693		μs/cm	A-T-037w
Ammoniacal nitrogen (w) _A #	5.90	1.16	12	<0.02	0.18	<0.02		mg/l	A-T-033w
Nitrogen, Total Oxidised TOxN (w) _A #	<0.1	<0.1	<0.1	12.6	0.1	4.0		mg/l	A-T-026w
Sulphate (w) _A #	9	59	11	40	79	60		mg/l	A-T-026w
Phenols - Total by HPLC (w) _A	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		mg/l	A-T-050w
Arsenic (dissolved) _A #	12	3	15	3	5	8		μg/l	A-T-025w
Boron (dissolved) _A #	1520	472	2080	51	101	133		μg/l	A-T-025w
Cadmium (dissolved) _A #	<0.2	<0.2	<1.0	<0.2	<0.2	<0.2		μg/l	A-T-025w
Copper (dissolved) _A #	<1	<1	<5	<1	<1	3		μg/l	A-T-025w
Chromium (dissolved) _A #	1	<1	<5	<1	<1	<1		μg/l	A-T-025w
Chromium (hexavalent) (w) _A #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		mg/l	A-T-040w
Lead (dissolved) _A #	<1	<1	<5	<1	<1	<1		μg/l	A-T-025w
Mercury (dissolved) _A #	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1		μg/l	A-T-025w
Nickel (dissolved) _A #	4	3	<5	<1	2	2		μg/l	A-T-025w
Zinc (dissolved) _A #	2	1	<5	3	3	1		μg/l	A-T-025w

					Oneme 1 10	ject Hel: 73			
Lab Sample ID	15/07765/1	15/07765/2	15/07765/3	15/07765/4	15/07765/5	15/07765/6			
Client Sample No	1	2	1	1	1	1			
Client Sample ID	BH1	BH1	BH2	внзв	BH4	ВН6			
Depth to Top	12.00	3.00	13.00	9.00	6.00	10.00			
Depth To Bottom									
Date Sampled	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15			.
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
PAH 16MS (w)									
Acenaphthene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Acenaphthylene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Anthracene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Benzo(a)anthracene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.01		μg/l	A-T-019w
Benzo(a)pyrene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		μg/l	A-T-019w
Benzo(b)fluoranthene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		μg/l	A-T-019w
Benzo(ghi)perylene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		μg/l	A-T-019w
Benzo(k)fluoranthene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		μg/l	A-T-019w
Chrysene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		μg/l	A-T-019w
Dibenzo(ah)anthracene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Fluoranthene (w) _A #	<0.01	<0.01	<0.01	<0.01	0.01	0.02		μg/l	A-T-019w
Fluorene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Indeno(123-cd)pyrene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	0.02		μg/l	A-T-019w
Naphthalene (w) _A #	<0.01	<0.01	0.02	<0.01	<0.01	<0.01		μg/l	A-T-019w
Phenanthrene (w) _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		μg/l	A-T-019w
Pyrene (w) _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	0.03		μg/l	A-T-019w
PAH (total 16) (w) _A #	<0.01	<0.01	0.02	<0.01	0.01	0.21		μg/l	A-T-019w

	1						T		
Lab Sample ID	15/07765/1	15/07765/2	15/07765/3	15/07765/4	15/07765/5	15/07765/6			
Client Sample No	1	2	1	1	1	1			
Client Sample ID	BH1	BH1	BH2	внзв	BH4	ВН6			
Depth to Top	12.00	3.00	13.00	9.00	6.00	10.00			
Depth To Bottom									
Date Sampled	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15			ţ
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
SVOC (excluding PAH-16) (w)									
2,4,5-Trichlorophenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2,4,6-Trichlorophenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2,4-Dichlorophenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2,4-Dimethylphenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2,4-Dinitrotoluene _A	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-052w
2,6-Dinitrotoluene _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2-Chloronaphthalene _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2-Chlorophenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2-Methylnaphthalene _A	<1	<1	<1	ব	<1	<1		μg/l	A-T-052w
2-Methylphenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
2-Nitrophenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
4-Bromophenyl phenyl ether _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
4-Chloro-3-methylphenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Bis(2-chloroisopropyl)ether _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
4-Methylphenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
4-Nitrophenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Bis(2-chloroethyl)ether _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Bis(2-chloroethoxy)methane _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Bis(2-ethylhexyl)phthalate _A	<2	<2	<2	<2	<2	<2		μg/l	A-T-052w
Butylbenzyl phthalate A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Carbazole _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Dibenzofuran _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
n-Dibutylphthalate _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
n-Dioctylphthalate _A	<10	<10	<10	<10	<10	<10		μg/l	A-T-052w
n-Nitroso-n-dipropylamine _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Diethyl phthalate _A	<1	<1	<1	<1	1	<1		μg/l	A-T-052w
Dimethyl phthalate _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Hexachlorobenzene _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Pentachlorophenol _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Phenol A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Hexachloroethane _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Nitrobenzene _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w

Lab Sample ID	15/07765/1	15/07765/2	15/07765/3	15/07765/4	15/07765/5	15/07765/6			
Client Sample No	1	2	1	1	1	1			
Client Sample ID	BH1	BH1	BH2	внзв	BH4	ВН6			
Depth to Top	12.00	3.00	13.00	9.00	6.00	10.00			
Depth To Bottom									
Date Sampled	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15			-
Sample Type	Water - EW			Method ref					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Meth
Isophorone _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Hexachlorocyclopentadiene _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w
Perylene _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-052w

<u> </u>				1		ect hei: 73			
Lab Sample ID	15/07765/1	15/07765/2	15/07765/3	15/07765/4	15/07765/5	15/07765/6			
Client Sample No	1	2	1	1	1	1			
Client Sample ID	BH1	BH1	BH2	внзв	BH4	ВН6			
Depth to Top	12.00	3.00	13.00	9.00	6.00	10.00			
Depth To Bottom									
Date Sampled	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15			+
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
VOC (w)									
Dichlorodifluoromethane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Chloromethane _A #	<10	<10	<10	<10	<10	<10		μg/l	A-T-006w
Vinyl Chloride _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Bromomethane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Chloroethane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Trichlorofluoromethane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
trans 1,2-Dichloroethene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Dichloromethane _A	<5	<5	<5	<5	<5	<5		μg/l	A-T-006w
Carbon Disulphide	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,1-Dichloroethene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,1-Dichloroethane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
cis 1,2-Dichloroethene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Bromochloromethane _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-006w
Chloroform _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
2,2-Dichloropropane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,2-Dichloroethane _A #	<2	<2	<2	<2	<2	<2		μg/l	A-T-006w
1,1,1-Trichloroethane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,1-Dichloropropene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Benzene A#	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-006w
Carbon Tetrachloride _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Dibromomethane _A #	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-006w
1,2-Dichloropropane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Bromodichloromethane _A #	<10	<10	<10	<10	<10	<10	 	μg/l	A-T-006w
Trichloroethene _A #	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-006w
cis 1,3-Dichloropropene _A #	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-006w
trans 1,3-Dichloropropene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,1,2-Trichloroethane _A #	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-006w
Toluene A#	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-006w
1,3-Dichloropropane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Dibromochloromethane _A #	<3	<3	<3	<3	<3	<3		μg/l	A-T-006w
1,2-Dibromoethane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Tetrachloroethene _A #	<1	<1	<1	<1	<1	<1	 	μg/l	A-T-006w

					Client Pro	ect nei. 75	0073		
Lab Sample ID	15/07765/1	15/07765/2	15/07765/3	15/07765/4	15/07765/5	15/07765/6			
Client Sample No	1	2	1	1	1	1			
Client Sample ID	BH1	BH1	BH2	внзв	BH4	ВН6			
Depth to Top	12.00	3.00	13.00	9.00	6.00	10.00			
Depth To Bottom									
Date Sampled	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15			
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
1,1,1,2-Tetrachloroethane _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Chlorobenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Ethylbenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
m & p Xylene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Bromoform _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Styrene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,1,2,2-Tetrachloroethane _A	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
o-Xylene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,2,3-Trichloropropane _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Isopropylbenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
Bromobenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
2-Chlorotoluene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
n-propylbenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
4-Chlorotoluene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,2,4-Trimethylbenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
4-Isopropyltoluene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,3,5-Trimethylbenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,2-Dichlorobenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,4-Dichlorobenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
sec-Butylbenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
tert-Butylbenzene _A #	<2	<2	<2	<2	<2	<2		μg/l	A-T-006w
1,3-Dichlorobenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
n-butylbenzene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w
1,2-Dibromo-3-chloropropane _A #	<2	<2	<2	<2	<2	<2		μg/l	A-T-006w
1,2,4-Trichlorobenzene _A #	<3	<3	<3	<3	<3	<3		μg/l	A-T-006w
1,2,3-Trichlorobenzene _A #	<3	<3	<3	<3	<3	<3		μg/l	A-T-006w
Hexachlorobutadiene _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-006w

					Onent i io	ect Het: 73	0070		
Lab Sample ID	15/07765/1	15/07765/2	15/07765/3	15/07765/4	15/07765/5	15/07765/6			
Client Sample No	1	2	1	1	1	1			
Client Sample ID	BH1	BH1	BH2	внзв	BH4	ВН6			
Depth to Top	12.00	3.00	13.00	9.00	6.00	10.00			
Depth To Bottom									
Date Sampled	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15	24-Nov-15			
Sample Type	Water - EW			od re					
Sample Matrix Code	N/A	N/A	N/A	N/A	N/A	N/A		Units	Method ref
TPH CWG									
Ali >C5-C6 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Ali >C6-C8 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Ali >C8-C10 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Ali >C10-C12 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Ali >C12-C16 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Ali >C16-C21 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Ali >C21-C35 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Total Aliphatics (w) _A	<5	<5	<5	<5	<5	<5		μg/l	A-T-022+23w
Aro >C5-C7 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Aro >C7-C8 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Aro >C8-C9 (w) _A #	<1	<1	1	<1	<1	<1		μg/l	A-T-022w
Aro >C9-C10 (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
Aro >C10-C12 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Aro >C12-C16 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Aro >C16-C21 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Aro >C21-C35 (w) _A #	<5	<5	<5	<5	<5	<5		μg/l	A-T-023w
Total Aromatics (w) _A	<5	<5	<5	<5	<5	<5		μg/l	A-T-022+23w
TPH (Ali & Aro) (w) _A	<5	<5	<5	<5	<5	<5		μg/l	A-T-022+23w
BTEX - Benzene (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
BTEX - Toluene (w) _A #	<1	<1	<1	<1	<1	<1	_	μg/l	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w
BTEX - m & p Xylene (w) _A #	<1	<1	<1	<1	<1	<1	_	μg/l	A-T-022w
BTEX - o Xylene (w) _A #	<1	<1	<1	<1	<1	<1	_	μg/l	A-T-022w
MTBE (w) _A #	<1	<1	<1	<1	<1	<1		μg/l	A-T-022w

REPORT NOTES

Notes - Soil chemical analysis

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones and brick and concrete fragments >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis. For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supersedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples which are positive for asbestos and/or if they are from outside the European Union and this supercedes any "D" subscripts.

Superscript "M" indicates method accredited to MCERTS.

If results are in italic font they are associated with an AQC failure. These are not accredited and are unreliable. A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

TPH analysis of water by method A-T-007

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Asbestos in soil

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if present as discrete fibres/fragments. Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council

6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex F WM3

and WAC Results

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

ACS Testing Ltd Unit 14 Blackhill Road West Holton Heath Trading Park Poole Dorset **BH16 6LE**

Certificate of Analysis Landfill Waste Acceptance Criteria (WAC)

Certificate Number: 16-06100-Issue 1-Page: 1

Site Address: Portishead & Pill Station Car Parks

Customer Order No: 16-79208

12/12/2016 Date of Sampling:

Date Received: 20/12/2016

18/01/2017 **Report Date:**

Please find your certificates of test attached for your samples received in the laboratory on 20/12/2016 under our laboratory reference 16-06100.

Remarks:

None

Results reviewed by:

David Redfern Technical Supervisor

Results approved by:

Mark Rowley Laboratory Manager

Any opinions or interpretations indicated are outside the scope of our UKAS accreditation. This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis. Excel copies of reports are valid only when accompanied by this PDF certificate. Client's Sample Description / ACS Material Description are noted for reference only.

Head Office Registered Office Unit 14B Unit 14B

Blackhill Road West Blackhill Road West Holton Heath Trading Park Holton Heath Trading Park

Dorset BH16 6LE Dorset BH16 6LE

ACS Environmental Testing Limited

Tel 01202 628680 Fax 01202 628642 Registered in England and Wales No. 6000065

Quality Testing & Materials Consultancy to the Construction Industry

Page: 1 of 4 4150 Certificate No. 16-06100-Issue 1-Page: 2

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number 26610

Sample ID 310806 - 16-79208

Clients Sample Ref. TPPH03
Location / Sample Depth (m) 0.30m

Time Sampled

Date Sampled 12/12/2016

Sample Deviating Codes fg

Client's Sample Description

ACS Testing Material Description MADE GROUND. Grey SAND

Principal Matrix (as received) SAND

LANDFILL WASTE ACCEPTANCE CRITERIA (WAC)							
TEST VALUES							
Mass of Undried Test Portion (Mw)	175	g	Volume of Leachant Used (L2)	0.350	litres		
Mass of Dried Test Portion (Mp)	175	g	Volume of Leachant Used (L8)	1.400	litres		
Moisture Content Ratio (MC)	0.0	%	Volume of Eluate (VE1)	0.270	litres		
Dry Matter Content (DR)	100	%	Volume of Eluate (VE2)	1.372	litres		

SOLIDS ANALYSIS				
Analyte	Method	AS	Sample Condition for Analysis	Results
Total Organic Carbon (%)	MT/ACSE/102	*	As received	30.2
Loss on ignition (%)	MT/ACSE/302	*g	Air dried at 30℃	5.0
BTEX (mg/kg)	MT/ACSE/101	*fg	As received	< 0.50
PCBs (7 congeners) (mg/kg)	MT/ACSE/104		Air dried at 30℃	< 1.00
Mineral oil (C10 - C40) (mg/kg)	MT/ACSE/105	*#fg	As received	114
PAHs (mg/kg)	MT/ACSE/106	*#g	Air dried at 30℃	32.5
pH (units)	MT/ACSE/301	*fg	Air dried at 30℃	6.9
ELUATE ANALYSIS				

LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION							
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste					
3 %	5 %	6 %					
		10 %					
6							
1							
500							
100							
	>6						

Analyte	Method	AS	Concentration in Eluate (mg/l)			nt Leached ng/kg)
Eluate Preparation	LP/ACSE/102	*				
Liquid : Solid Ratio (L/S)	LP/ACSE/101	*	L/S 2	L/S 8	L/S 2	L/S 10
pH (units)	MT/ACSE/301	*	8.0	8.4		
Temperature (°C)	MT/ACSE/301		20	20		
Conductivity (mS/m)	MT/ACSE/303	*	17.6	8.32		
Arsenic	MT/ACSE/205	*	0.012	0.012	0.024	0.120
Barium	MT/ACSE/205	*	0.288	0.0658	0.575	1.00
Cadmium	MT/ACSE/205	*	< 0.0003	< 0.0003	< 0.0006	< 0.003
Chromium (total)	MT/ACSE/205	*	0.003	0.002	0.007	0.022
Copper	MT/ACSE/205	*	0.014	0.006	0.028	0.076
Mercury	MT/ACSE/202	*	0.0002	0.0002	0.0004	0.0018
Molybdenum	MT/ACSE/205	*	0.0040	0.0033	0.008	0.034
Nickel	MT/ACSE/205	*	0.0046	0.0014	0.009	0.019
Lead	MT/ACSE/205	*	0.006	< 0.004	0.011	< 0.040
Antimony	MT/ACSE/205	*	0.031	0.016	0.063	0.180
Selenium	MT/ACSE/205	*	< 0.006	< 0.006	< 0.012	< 0.060
Zinc	MT/ACSE/205	*	0.026	0.017	0.053	0.189
Chloride	MT/ACSE/204	*	< 3.00	< 3.00	< 6.00	< 30.0
Fluoride	MT/ACSE/204	*	0.53	0.26	1.06	3.02
Sulphate	MT/ACSE/204	*	8.38	< 3.00	16.8	< 30.00
Total dissolved solids	MT/ACSE/304	*	145	60	290	731.1
Phenol index	MT/ACSE/107	*	< 0.05	< 0.05	< 0.100	< 0.50
Dissolved organic carbon	MT/ACSE/103	*	14.2	3.91	28.4	55.0

LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION						
BS EN 12457-3:2002 LIMIT VALUES (mg/kg) at L/S 10						
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste				
0.5	2	25				
20	100	300				
0.04	1	5				
0.5	10	70				
2	50	100				
0.01	0.2	2				
0.5	10	30				
0.4	10	40				
0.5	10	50				
0.06	0.7	5				
0.1	0.5	7				
4	50	200				
800	15000	25000				
10	150	500				
1000	20000	50000				
4000	60000	100000				
1						
500	800	1000				

Comments: (comments are beyond the scope of UKAS accreditation)

Denotes individual sample results which exceed the landfill waste acceptance criteria for Inert Waste

The landfill waste acceptance criteria limits are provided for guidance only. Eluates prepared in accordance with BS EN 12457-3:2002*

Certificate No. 16-06100-Issue 1-Page: 3

Site Address Portishead & Pill Station Car Parks

ACSE Sample Number 26614

Sample ID 310810 - 16-79208

Clients Sample Ref. TPPH06
Location / Sample Depth (m) 0.90m

Time Sampled

Date Sampled 12/12/2016

Sample Deviating Codes fg

Client's Sample Description

ACS Testing Material Description MADE GROUND. Grey brown sand SILT

Principal Matrix (as received) SILT

LANDFILL WASTE ACCEPTANCE CRITERIA (WAC)							
TEST VALUES							
Mass of Undried Test Portion (Mw)	175	g	Volume of Leachant Used (L2)	0.350	litres		
Mass of Dried Test Portion (Mp)	175	g	Volume of Leachant Used (L8)	1.400	litres		
Moisture Content Ratio (MC)	0.0	%	Volume of Eluate (VE1)	0.283	litres		
Dry Matter Content (DR)	100	%	Volume of Eluate (VE2)	1.358	litres		

SOLIDS ANALYSIS				
Analyte	Method	AS	Sample Condition for Analysis	Results
Total Organic Carbon (%)	MT/ACSE/102	*	As received	3.17
Loss on ignition (%)	MT/ACSE/302	*g	Air dried at 30℃	2.0
BTEX (mg/kg)	MT/ACSE/101	*fg	As received	< 0.50
PCBs (7 congeners) (mg/kg)	MT/ACSE/104		Air dried at 30 ℃	< 1.00
Mineral oil (C10 - C40) (mg/kg)	MT/ACSE/105	*#fg	As received	< 50.0
PAHs (mg/kg)	MT/ACSE/106	*#g	Air dried at 30 ℃	< 2.00
pH (units)	MT/ACSE/301	*fg	Air dried at 30 ℃	6.9
ELUATE ANALYSIS				

LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION							
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste					
3 %	5 %	6 %					
		10 %					
6							
1							
500							
100							
	>6						

	AITALIOIO
Analyto	

Analyte	Method	AS	Concentration in Eluate (mg/l)		Amount Leached (mg/kg)		
Eluate Preparation	LP/ACSE/102	*	(1119/1)		(11	ig/Ng)	
Liquid : Solid Ratio (L/S)	LP/ACSE/101	*	L/S 2	L/S 8	L/S 2	L/S 10	
pH (units)	MT/ACSE/301	*	7.9	8.5			
Temperature (°C)	MT/ACSE/301		20	20			
Conductivity (mS/m)	MT/ACSE/303	*	32.3	9.52			
Arsenic	MT/ACSE/205	*	0.003	0.020	0.007	0.169	
Barium	MT/ACSE/205	*	0.273	0.0660	0.546	0.995	
Cadmium	MT/ACSE/205	*	< 0.0003	< 0.0003	< 0.0006	< 0.003	
Chromium (total)	MT/ACSE/205	*	0.006	0.002	0.011	0.025	
Copper	MT/ACSE/205	*	0.006	0.004	0.011	0.041	
Mercury	MT/ACSE/202	*	0.0002	0.0001	0.0004	0.0013	
Molybdenum	MT/ACSE/205	*	0.123	0.0199	0.245	0.365	
Nickel	MT/ACSE/205	*	0.0018	0.0011	0.004	0.012	
Lead	MT/ACSE/205	*	< 0.004	< 0.004	< 0.008	< 0.040	
Antimony	MT/ACSE/205	*	0.009	< 0.003	0.017	< 0.030	
Selenium	MT/ACSE/205	*	0.023	< 0.006	0.046	< 0.060	
Zinc	MT/ACSE/205	*	0.008	0.005	0.016	0.059	
Chloride	MT/ACSE/204	*	6.05	< 3.00	12.1	< 30.0	
Fluoride	MT/ACSE/204	*	1.14	0.91	2.28	9.48	
Sulphate	MT/ACSE/204	*	70.7	7.44	141	176.7	
Total dissolved solids	MT/ACSE/304	*	255	75	510	1041	
Phenol index	MT/ACSE/107	*	< 0.05	< 0.05	< 0.100	< 0.50	
Dissolved organic carbon	MT/ACSE/103	*	8.06	2.62	16.1	35.0	

LANDFILL WASTE ACCEPTANCE CRITERIA SPECIFICATION									
BS EN 12457-3:2002 LIMIT VALUES (mg/kg) at L/S 10									
Inert Waste	Stable non-reactive hazardous waste in non-hazardous landfill	Hazardous waste							
0.5	2	25							
20	100	300							
0.04	0.04 1								
0.5	10	70							
2	50	100							
0.01	0.2	2							
0.5	10	30							
0.4	10	40							
0.5	10	50							
0.06	0.7	5							
0.1	0.5	7							
4	50	200							
800	15000	25000							
10	150	500							
1000	20000	50000							
4000	60000	100000							
1									
500	800	1000							

Comments: (comments are beyond the scope of UKAS accreditation)

Denotes individual sample results which exceed the landfill waste acceptance criteria for Inert Waste

The landfill waste acceptance criteria limits are provided for guidance only. Eluates prepared in accordance with BS EN 12457-3:2002*

Certificate No. 16-06100-Issue 1-Page: 4

Site Address Portishead & Pill Station Car Parks

Technical Information for Analytical Results

Analysis

* - denotes analysis covered by our UKAS accreditation

- denoted analysis covered by our MCERTS certification

AD = Sample tested in air dried condition.

AR = Sample tested in as-received condition

D = Sample tested in dry condition.

L = Laboratory prepared leachate

SC = sub contracted

Where results are less than the limit of detection, the value of 0 is used in calculations.

For Phenol index, m- and p- cresol are reported as mixed isomers, calibrated with reference to a p-cresol reference solution.

The individual concentrations of m- and p- cresol cannot be quantified using this method, however, the result reported for the mixed isomers will be an over estimation of the true result in samples where m-cresol is present.

Deviating Codes

Deviating Samples

The use of any of the following symbols indicates that the sample was deviating and it is possible therefore that the results provided may not be representative of the sample taken.

- a The date and/or time of sampling has not been provided, therefore it is not known if the time lapse between sampling and analysis has exceeded the acceptable holding time(s). It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- b No sampling time given (waters only) unable to confirm if samples are within acceptable holding times.
- c This Test Item was received in an inappropriate container; it is possible that sample and/or analyte integrity has not been maintained and that the results are non-representative of the original sample taken.
- d On receipt, the temperature of the sample received was found to fall outside the recommendations of EN ISO 18512:2007 Soils & Granular Wastes.
- The sample was received in a container that had been filled incorrectly which may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- f The delay between Sampling and Sample Receipt is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.
- g The delay between Sampling and Analysis is greater than the recommended holding time for the analyte of interest in this matrix. It is possible that some deterioration may have compromised sample and/or analyte integrity, rendering the results non-representative of the original sample taken.

The following Additional Deviating Sample Codes may also be used.

- I/S Insufficient sample mass/volume received for accurate quantification of this analyte.
- U/S The sample received was deemed unsuitable for accurate determination of this analyte using the Test Methods available.

Deviating Methods

- Z A minor deviation from the Test Method was necessary but this is deemed to have had no impact on the Test Result, the legitimacy of the method validation or the Accreditation Status of the Test Method.
- Y A significant deviation from the Test Method was necessary which is deemed to have had no impact on the Test Result, however, due to a lack of sufficient supporting validation, the Accreditation Status of the Method has been removed.
- W The normal LOD of the instrument/method could not be attained, thus an elevated LOD or LOQ has been applied to the Test Data, however, the data reported meets the requirements of the Client and does not affect compliance with the specification limit (where applicable).
- V One of the QA/QC parameters failed, however, the increased implied Uncertainty associated with the Test Result meets the requirements of the Client and does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.2.9).
- U The precision acceptance criteria associated with the Test Method could not be met but the Test Result fulfils the Client's objectives and the elevated Uncertainty does not affect compliance with the specification limit (where applicable) (Quality Manual, Section 18.8.10).
- T The Test Method used was supplied by the Client and involved a simple modification of a Test Method for which ACSE holds accreditation (Quality Manual, Section 18.3.8).

ATKINS CatWasteSoil

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Hazardous Waste Y/N	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8	HP9	HP10	HP11	HP12	HP13	HP14	HP15	HP16
26610	0m	N	No	No	No	No	No	No	No									
26611	0m	N	No	No	No	No	No	No	No									
26612	0m	Y	No	No	No	No	Yes	No	No									
26613	0m	N	No	No	No	No	No	No	No									
26614	0m	N	No	No	No	No	No	No	No									
																		L
																		L
			-	-								-		-				——
	1																	$\vdash \vdash \vdash$
	1																	$\vdash \vdash \vdash$
																		$\vdash \vdash \vdash$
																		\vdash
																		1

Classification Assessment Tool of Soil Wastes - Individual Compound Information CatWasteSoil

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26610	0m	pН	0.00000	N				
26610	0m	Benzene	0.00002	N				H225 test
26610	0m	Naphthalenene	0.00008	N				H228 test
26610	0m	Acenaphthylene	0.00011	N				
26610	0m	Acenaphthene	0.00002	N				
26610	0m	Fluorene	0.00004	N				
26610	0m	Phenanthrene	0.00019	N				
26610	0m	Anthracene	0.00041	N				
26610	0m	Fluoranthene	0.00057	N				
26610	0m	Pyrene	0.00059	N				
26610	0m	Benzo(a)anthracene	0.00017	N				
26610	0m	Chrysene	0.00024	N				
26610	0m	Benzo(b)fluoranthene	0.00030	N				
26610	0m	Benzo(k)fluoranthene	0.00010	N				
26610	0m	Benzo(a)pyrene	0.00015	N				
26610	0m	Indeno(1,2,3-cd)pyrene	0.00011	N				
26610	0m	Di-benz(a,h,)anthracene	0.00005	N				
26610	0m	Benzo(g,h,i)perylene	0.00012	N				
26610	0m	(sum of congeners or total	0.00002	N				
26610	0m	hydrocarbon/oil with marker	0.01141	N				H225 test
26610	0m	Arsenic	0.00917	N				
26610	0m	Boron	0.00033	N				
26610	0m	Cadmium	0.00084	N				
26610	0m	Chromium (Total)	0.00499	N				
26610	0m	Copper	0.03670	N				
26610	0m	Lead	0.03259	N				
26610	0m	Mercury	0.00003	N		-		
26610	0m	Nickel	0.01932	N				
26610	0m	Zinc	0.00000	N		-		
26610	0m	Zincx	0.13098	N		-		
26610	0m	Free Cyanide	0.00010	N				H224 test
26611	0m	рН	0.00000	N				

Classification Assessment Tool of Soil Wastes - Individual Compound Information CatWasteSoil

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26611	0m	Naphthalenene	0.00006	N				H228 test
26611	0m	Acenaphthylene	0.00005	N				
26611	0m	Acenaphthene	0.00001	N				
26611	0m	Fluorene	0.00003	N				
26611	0m	Phenanthrene	0.00018	N				
26611	0m	Anthracene	0.00024	N				
26611	0m	Fluoranthene	0.00032	N				
26611	0m	Pyrene	0.00031	N				
26611	0m	Benzo(a)anthracene	0.00013	N				
26611	0m	Chrysene	0.00022	N				
26611	0m	Benzo(b)fluoranthene	0.00029	N				
26611	0m	Benzo(k)fluoranthene	0.00009	N				
26611	0m	Benzo(a)pyrene	0.00011	N				
26611	0m	Indeno(1,2,3-cd)pyrene	0.00011	N				
26611	0m	Di-benz(a,h,)anthracene	0.00004	N				
26611	0m	Benzo(g,h,i)perylene	0.00014	N				
26611	0m	hydrocarbon/oil with marker	0.01137	N				H225 test
26611	0m	Arsenic	0.00829	N				
26611	0m	Boron	0.00376	N				
26611	0m	Cadmium	0.00101	N				
26611	0m	Chromium (Total)	0.00682	N				
26611	0m	Copper	0.10248	N				
26611	0m	Lead	0.01833	N				
26611	0m	Mercury	0.00003	N				
26611	0m	Nickel	0.02241	N				
26611	0m	Zinc	0.00000	N				
26611	0m	Zincx	0.13136	N				
26611	0m	Free Cyanide	0.00010	N				H224 test
26612	0m	pĤ	0.00000	N				
26612	0m	Naphthalenene	0.00010	N				H228 test
26612	0m	Acenaphthylene	0.00005	N				
26612	0m	Acenaphthene	0.00003	N				

Classification Assessment Tool of Soil Wastes - Individual Compound Information CatWasteSoil

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26612	0m	Fluorene	0.00005	N				
26612	0m	Phenanthrene	0.00025	N				
26612	0m	Anthracene	0.00024	N				
26612	0m	Fluoranthene	0.00040	N				
26612	0m	Pyrene	0.00037	N				
26612	0m	Benzo(a)anthracene	0.00017	N				
26612	0m	Chrysene	0.00026	N				
26612	0m	Benzo(b)fluoranthene	0.00034	N				
26612	0m	Benzo(k)fluoranthene	0.00009	N				
26612	0m	Benzo(a)pyrene	0.00018	N				
26612	0m	Indeno(1,2,3-cd)pyrene	0.00014	N				
26612	0m	Di-benz(a,h,)anthracene	0.00005	N				
26612	0m	Benzo(g,h,i)perylene	0.00015	N				
26612	0m	hydrocarbon/oil with marker	0.00724	N				H225 test
26612	0m	Arsenic	0.01076	N				
26612	0m	Boron	0.00118	N				
26612	0m	Cadmium	0.00084	N				
26612	0m	Chromium (Total)	0.00480	N				
26612	0m	Copper	0.07580	N				
26612	0m	Lead	0.00000	N				
26612	0m	Leadx	0.19729	Υ	HP14		H410	
26612	0m	Mercury	0.00023	Ν				
26612	0m	Nickel	0.01746	N				
26612	0m	Zinc	0.00000	N				
26612	0m	Zincx	0.36145	Υ	HP14		H410	
26612	0m	Free Cyanide	0.00010	N				H224 test
26613	0m	pН	0.00000	N				
26613	0m	Naphthalenene	0.00002	N			·	H228 test
26613	0m	Acenaphthylene	0.00001	N				
26613	0m	Acenaphthene	0.00000	N				
26613	0m	Fluorene	0.00001	N			·	
26613	0m	Phenanthrene	0.00003	N				

Classification Assessment Tool of Soil Wastes - Individual Compound Information CatWasteSoil

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26613	0m	Anthracene	0.00002	N				
26613	0m	Fluoranthene	0.00002	N				
26613	0m	Pyrene	0.00002	N				
26613	0m	Benzo(a)anthracene	0.00001	N				
26613	0m	Chrysene	0.00001	N				
26613	0m	Benzo(b)fluoranthene	0.00002	N				
26613	0m	Benzo(k)fluoranthene	0.00001	N				
26613	0m	Benzo(a)pyrene	0.00001	N				
26613	0m	Indeno(1,2,3-cd)pyrene	0.00001	N				
26613	0m	Di-benz(a,h,)anthracene	0.00000	N				
26613	0m	Benzo(g,h,i)perylene	0.00001	N				
26613	0m	hydrocarbon/oil with marker	0.00232	N				H225 test
26613	0m	Arsenic	0.00787	N				
26613	0m	Boron	0.00106	N				
26613	0m	Cadmium	0.00038	N				
26613	0m	Chromium (Total)	0.00783	N				
26613	0m	Copper	0.00973	N				
26613	0m	Lead	0.01317	N				
26613	0m	Mercury	0.00002	N				
26613	0m	Nickel	0.00988	N				
26613	0m	Zinc	0.00000	N				
26613	0m	Zincx	0.05815	N				
26613	0m	Free Cyanide	0.00010	N				H224 test
26614	0m	рH	0.00000	N				
26614	0m	Benzene	0.00002	N				H225 test
26614	0m	Naphthalenene	0.00002	N				H228 test
26614	0m	Acenaphthylene	0.00000	N				
26614	0m	Acenaphthene	0.00001	N				
26614	0m	Fluorene	0.00000	N				
26614	0m	Phenanthrene	0.00001	N				
26614	0m	Anthracene	0.00000	N				
26614	0m	Fluoranthene	0.00000	N				

Classification Assessment Tool of Soil Wastes - Individual Compound Information CatWasteSoil

Site Name	Portishead & Pill Station Car Parks
Location	Portishead & Pill Station Car Parks
Site ID	
Job Number	16-06100
Date	18/01/2017
User Name	edward.davies@acstesting.co.uk
Company Name	ACS Testing Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
26614	0m	Pyrene	0.00000	N				
26614	0m	Benzo(a)anthracene	0.00000	N				
26614	0m	Chrysene	0.00000	N				
26614	0m	Benzo(b)fluoranthene	0.00000	N				
26614	0m	Benzo(k)fluoranthene	0.00000	N				
26614	0m	Benzo(a)pyrene	0.00000	N				
26614	0m	Indeno(1,2,3-cd)pyrene	0.00000	N				
26614	0m	Di-benz(a,h,)anthracene	0.00000	N				
26614	0m	Benzo(g,h,i)perylene	0.00000	N				
26614	0m	Arsenic	0.00804	N				
26614	0m	Boron	0.00125	N				
26614	0m	Cadmium	0.00013	N				
26614	0m	Chromium (Total)	0.00378	N				
26614	0m	Copper	0.00768	N				
26614	0m	Lead	0.00183	N				
26614	0m	Mercury	0.00003	N				
26614	0m	Nickel	0.00916	N				
26614	0m	Zinc	0.00000	N				
26614	0m	Zincx	0.01287	N				
26614	0m	Free Cyanide	0.00010	N				H224 test

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council
6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex G
Chemical Assessment Criteria

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

Table G.1: Generic Assessment Criteria (GAC) for Soils Assessment

Determinand	Units	GAC	GAC Source (see notes)
Metals			
Arsenic	mg/kg	79	A
Cadmium	mg/kg	220	Α
Chromium	mg/kg	1500	В
Copper	mg/kg	12000	В
Mercury	mg/kg	120*	В
Nickel	mg/kg	230	В
Lead	mg/kg	630	A
Zinc	mg/kg	81000	В
Boron (Hot Water Soluble)	mg/kg	21000	В
pH (@ 20 °C)	-	n/a	n/a
Carbon			
Total Organic Carbon (TOC)	%	-	-
Fraction of Organic Carbon (FOC)	%	-	-
Loss on Ignition (400 °C)	%	-	-
Soil Organic Matter (SOM)	%	-	-
Water Soluble Sulphate	mg/l	-	-
Total Petroleum Hydrocarbons (TPH)			
Aliphatic >C5-C6	mg/kg	570000	В
Aliphatic >C6-C8	mg/kg	600000	В
Aliphatic >C8-C10	mg/kg	13000	В
Aliphatic >C10-C12	mg/kg	13000	В
Aliphatic >C12-C16	mg/kg	13000	В
Aliphatic >C16-C35	mg/kg	250000	В
Aliphatic >C35-C44	mg/kg	250000	В
Aromatic >C5-C7	mg/kg	56000	В
Aromatic >C7-C8	mg/kg	56000	В
Aromatic >C8-C10	mg/kg	5000	В
Aromatic >C10-C12	mg/kg	5000	В

Table G.1: Generic Assessment Criteria (GAC) for Soils Assessment

Determinand	Units	GAC	GAC Source (see notes)
Aromatic >C12-C16	mg/kg	5100	В
Aromatic >C16-C21	mg/kg	3800	В
Aromatic >C21-C35	mg/kg	3800	В
Aromatic >C35-C44	mg/kg	3800	В
Total TPH (C10-C40)	mg/kg	-	-
(Semi) Volatile Organic Compounds (VOC)***			
Chloromethane	mg/kg	0.01	D
Speciated Polycyclic Aromatic Hydrocarbons (PAH)			
Naphthalene	mg/kg	4900	В
Acenaphthylene	mg/kg	15000	В
Acenaphthene	mg/kg	15000	В
Fluorene	mg/kg	9900	В
Phenanthrene	mg/kg	3100	В
Anthracene	mg/kg	74000	В
Fluoranthene	mg/kg	3100	В
Pyrene	mg/kg	7400	В
Benzo(a)anthracene	mg/kg	29	В
Chrysene	mg/kg	57	В
Benzo(b)fluoranthene	mg/kg	7.1	В
Benzo(k)fluoranthene	mg/kg	190	В
Benzo(a)pyrene	mg/kg	10	A
Indeno(1,2,3-cd)pyrene	mg/kg	82	В
Dibenzo(a,h)anthracene	mg/kg	0.57	В
Benzo(g,h,i)perylene	mg/kg	640	В
Total PAH	mg/kg	-	-
Total Phenol (Sum of 4 specific phenols)	mg/kg	440	В
Total Cyanide	mg/kg	-	-

Table G.1: Generic Assessment Criteria (GAC) for Soils Assessment

Determinand	Units	GAC	GAC Source (see notes)
Polychlorinated Biphenyls (PCB) (7 Congeners)	mg/kg	0.008	С
Asbestos Screening	-	n/a	n/a
BTEX			
Benzene	mg/kg	140**	A
Ethylbenzene	mg/kg	24000	В
m+p-xylene	mg/kg	41000	В
o-xylene	mg/kg	41000	В
Toluene	mg/kg	56000	В
Total BTEX	mg/kg	-	-

Notes:

- A Department for Environment, Food and Rural Affairs December. 2014. SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- B Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- C Environment Agency. 2009. Soil Guideline Values for dioxins, furans and dioxin-like PCBs in soil, Science Report SC050021 / Dioxins SGV.
- D EIC/AGS/CL:AIRE. 2010. Soil Generic Assessment Criteria for Human Health Risk Assessment.
- * S4UL based on Inorganic Mercury.
- ** Based on 6% SOM.
- *** Determinands only reported if detected and GAC are available.

Table G.2: CWSC for Leachate and Groundwater Assessment

Determinand	Units	EQS	DWS
Metals			
Arsenic	mg/l	0.05	-
Boron	mg/l	-	1
Cadmium	mg/l	0.00008 to 0.00025	-
Chromium	mg/l	0.0047	-
Chromium VI	mg/l	0.0034	-
Copper	mg/l	0.001*	-
Mercury	mg/l	0.00007	-
Nickel	mg/l	0.004*	-
Lead	mg/l	0.0012*	-
Zinc	mg/l	0.014*^	-
Speciated Polyaromatic Hydrocarbons (PAH)			
Acenaphthene	μg/l	-	-
Acenaphthylene	μg/l	-	-
Anthracene	μg/l	0.1	-
Benzo(a)anthracene	μg/l	-	-
Benzo(b)fluoranthene	μg/l	0.00017^^	-
Benzo(ghi)perylene	μg/l	0.00017^^	-
Benzo(k)fluoranthene	μg/l	0.00017^^	-
Benzo(a)pyrene	μg/l	0.00017	-
Chrysene	μg/l	-	-
Dibenzo(a,h)anthracene	μg/l	-	-
Fluoranthene	μg/l	0.0063	-
Fluorene	μg/l		-
Indeno(1,2,3-cd)pyrene	μg/l	0.00017^^	-
Naphthalene	μg/l	2	-
Phenanthrene	μg/l	-	-
Pyrene	μg/l	-	-

Table G.2: CWSC for Leachate and Groundwater Assessment

Determinand	Units	EQS	DWS
Total PAH (Sum of USEPA 16)	μg/l	-	-
pH (@ 20 °C)	-	6 to 9	-
Total Cyanide	μg/l	1	-
Ammoniacal Nitrogen	mg/l	0.3**	-
Sulphate	mg/l	400***	-

Notes:

comparison with the biota EQS or the corresponding AA-EQS in water.

^{*} Screening value assumes bioavailable concentrations for copper, lead, nickel and zinc.

^{**} Screening value for total ammonia for a 'good' status river'.

^{***} Operational EQS for sulphate (Environment Agency and DEFRA, 2016).

[^] Zinc screening value includes ambient background concentration for the River Avon catchment.

[^] Benzo(a)pyrene can be considered as a marker for the other PAHs, hence only benzo(a)pyrene must be monitored for

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council

6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex H Gas

Monitoring Results

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

[Pressures] Previous]	During	Start_	<u>End</u>	Equipment Used & Remarks
Round 2 Fluctuating I Round 3 Rising Flu Round 4 Fluctuating I Round 5 Fluctuating I	Falling uctuating Rising Rising	1010 1012 1019 1021 1015 994	1011 1008 1020 1022 1016 996	GA2000 SN-GA13842 + Ground: Wet + Wind: Light + Air Temp: 10DegC GA2000 SN-GA13842 + Ground: Damp + Wind: Light + Air Temp: 7DegC GA2000 SN-GA13842 + Ground: Dry + Wind: Light + Air Temp: 10DegC GA2000 SN-GA13842 + Dipmeter + Weather: Rain + Ground: Damp + Wind: Light + Air Temp: 6DegC Dipmeter + Weather: Overcast + Ground: Damp + Wind: Medium + Air Temp: 8DegC Dipmeter + Weather: Overcast + Ground: Damp + Wind: Light + Air Temp: 9DegC

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	2	50	1	18.00		6.00 to 18.00	19/11/2015 12:15:00	1011	1011	6.8 _(I)	-	-	-	-	-	-	-
BH1	2	50	1			6.00 to 18.00	15 secs		-	5.2 _(I)	-	-	-	-	-	-	-
BH1	2	50	1			6.00 to 18.00	30 secs		-	-0.6 _(SS)	-	-	-	-	-	-	-
BH1	2	50	1 (2)	18.00		6.00 to 18.00	19/11/2015 12:16:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	15 secs	-	-	-	-	0.6	0.0	20.0	0.0	1.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	30 secs		-	-	-	0.6	0.0	19.5	0.0	1.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	60 secs	-	-	-	-	0.6	0.0	19.4	0.0	1.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	90 secs	-	-	-	-	0.6	0.0	19.4	0.0	1.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	120 secs	-	-	-	-	0.6	0.0	19.5	0.0	1.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	180 secs	-	-	-	-	0.5	0.0	19.6	0.0	1.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	240 secs	-	-	-	-	0.5	0.0	19.6	0.0	1.0	0.0
BH1	2	50	1 (2)			6.00 to 18.00	300 secs	-	-	-	-	0.5	0.0	19.7	0.0	1.0	-
BH1	2	50	1 (3)	18.00	18.62	6.00 to 18.00	19/11/2015 12:22:00	-	-	-	2.10	-	1	-	-	-	-
BH1	1	19	1	5.00		1.00 to 5.00	19/11/2015 12:25:00	1012	1012	$0.0_{(I)}$	-	-	-	-	-	-	-
BH1	1	19	1			1.00 to 5.00	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH1	1	19	1 (2)	5.00		1.00 to 5.00	19/11/2015 12:26:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	15 secs	-	-	-	-	4.9	0.0	15.4	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	30 secs	-	-	-	-	5.0	0.0	11.9	0.0	0.0	0.0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

In.	
UN'I	\
	þ
Up.	,

STRUCTURAL SOILS The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

1 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	1	19	1 (2)			1.00 to 5.00	60 secs	-	-	-	-	4.8	0.0	12.7	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	90 secs	-	-	-	-	4.7	0.0	13.0	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	120 secs	-	-	-	-	4.6	0.0	13.1	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	180 secs	-	-	-	-	4.2	0.0	14.0	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	240 secs	-	-	ı	-	4.0	0.0	14.4	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	300 secs	-	_	ı	-	3.6	0.0	15.4	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	360 secs	-	-	-	-	3.2	0.0	16.5	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	420 secs	-	-	-	-	3.0	0.0	17.2	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	480 secs		-	-	-	2.6	0.0	17.9	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	540 secs	>	-	-	-	2.5	0.0	18.2	0.0	0.0	0.0
BH1	1	19	1 (2)			1.00 to 5.00	600 secs	-	-	-	-	2.4	0.0	18.5	0.0	0.0	0.0
BH1	1	19	1 (3)	5.00	4.61	1.00 to 5.00	19/11/2015 12:37:00	-	-	-	2.57	-	-	-	-	-	-
BH1	2	50	2	18.00		6.00 to 18.00	24/11/2015 09:00:00	1012	1012	$0.1_{(I)}$	-	-	-	-	-	-	-
BH1	2	50	2			6.00 to 18.00	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH1	2	50	2 (2)	18.00		6.00 to 18.00	24/11/2015 09:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	15 secs	-	-	-	-	0.2	0.0	20.9	0.0	3.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	30 secs	-	-	-	-	0.2	0.0	20.9	0.0	2.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	60 secs	-	-	-	-	0.2	0.0	20.9	0.0	0.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	90 secs	-	-	-	-	0.2	0.0	20.9	0.0	0.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	120 secs	-	-	-	-	0.2	0.0	20.9	0.0	0.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	180 secs	-	-	-	-	0.1	0.0	20.9	0.0	0.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	240 secs	-	-	-	-	0.1	0.0	20.9	0.0	0.0	0.0
BH1	2	50	2 (2)			6.00 to 18.00	300 secs	-	-	•	-	0.1	0.0	20.9	0.0	0.0	0.0
BH1	2	50	2 (3)	18.00	18.51	6.00 to 18.00	24/11/2015 09:07:00	-	-	-	2.01	-	-	-	-	-	-
	R	temarks	: Samples	taken													

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS The Old School Stillhouse Lane Bedminster

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	1	19	2	5.00		1.00 to 5.00	24/11/2015 09:25:00	1013	1013	0.0(1)	-	-	-	-	-	-	-
BH1	1	19	2			1.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH1	1	19	2 (2)	5.00		1.00 to 5.00	24/11/2015 09:26:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	15 secs	-	-	-	-	3.3	0.0	18.0	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	30 secs	-	-	-	-	3.5	0.0	15.6	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	60 secs	-	_	-	-	3.6	0.0	15.2	0.0	0.0	0.0
BH1	1	19	2(2)			1.00 to 5.00	90 secs	-	-	-	-	3.8	0.0	15.0	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	120 secs	-	-	-	-	3.7	0.0	15.2	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	180 secs	-	-	-	-	3.6	0.0	15.4	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	240 secs		-	-	-	3.5	0.0	15.6	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	300 secs	-	-	-	-	3.4	0.0	15.9	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	360 secs	-	-	-	-	3.2	0.0	16.3	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	420 secs		-	-	-	3.1	0.0	16.7	0.0	0.0	0.0
BH1	1	19	2(2)			1.00 to 5.00	480 secs	-	-	-	-	2.9	0.0	17.2	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	540 secs	-	-	-	-	2.8	0.0	17.6	0.0	0.0	0.0
BH1	1	19	2 (2)			1.00 to 5.00	600 secs	-	-	-	-	2.7	0.0	17.9	0.0	0.0	0.0
BH1	1	19	2 (3)	5.00		1.00 to 5.00	24/11/2015 09:37:00	-	-	-	-	-	-	-	-	-	-
	R	Remarks	: Samples	taken.													
BH1	2	50	3	18.00		6.00 to 18.00	02/12/2015 10:15:00	1019	1019	-0.3 _(I)	-	-	-	-	-	-	-
BH1	2	50	3			6.00 to 18.00	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH1	2	50	3 (2)	18.00		6.00 to 18.00	02/12/2015 10:16:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	15 secs	-	-	-	-	0.2	0.0	20.6	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	30 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	60 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	90 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

3 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	2	50	3 (2)			6.00 to 18.00	120 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	180 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	240 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	300 secs	-	-	-	-	0.2	0.0	20.5	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	360 secs	-	-	•	-	0.2	0.0	20.5	-	0.0	0.0
BH1	2	50	3 (2)			6.00 to 18.00	420 secs	-	_	1	-	0.2	0.0	20.6	-	0.0	0.0
BH1	2	50	3 (3)	18.00	18.55	6.00 to 18.00	02/12/2015 10:24:00	-	-	•	1.95	-	ı	-	-	-	-
BH1	1	19	3	5.00		1.00 to 5.00	02/12/2015 11:10:00	1020	1020	$0.0_{(I)}$	-	-	-	-	-	-	-
BH1	1	19	3			1.00 to 5.00	30 secs	1	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH1	1	19	3 (2)	5.00		1.00 to 5.00	02/12/2015 11:11:00	- /	_	-	-	0.0	0.0	20.9	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	15 secs	-	-	1	-	0.6	0.0	20.9	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	30 secs	-	-	•	-	0.8	0.0	19.8	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	60 secs		-	•	-	1.5	0.0	18.9	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	90 secs	-	-	•	-	1.5	0.0	18.8	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	120 secs	-	-	ı	-	1.4	0.0	18.8	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	180 secs	-	-	•	-	1.3	0.0	19.0	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	240 secs	-	-	•	-	1.2	0.0	19.1	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	300 secs	-	-	•	-	1.1	0.0	19.2	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	360 secs	-	-	•	-	1.1	0.0	19.3	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	420 secs	-	-	•	-	1.0	0.0	19.4	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	480 secs	-	-	•	-	1.0	0.0	19.4	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	540 secs	-	-	ı	-	1.0	0.0	19.5	-	0.0	0.0
BH1	1	19	3 (2)			1.00 to 5.00	600 secs	-	-	-	-	1.0	0.0	19.5	-	0.0	0.0
BH1	1	19	3 (3)	5.00	19.87	1.00 to 5.00	02/12/2015 11:22:00	-	-	-	17.04	1	-	-	-	-	-
BH1	2	50	4	18.00		6.00 to 18.00	11/12/2015 10:55:00	-	-	$0.0_{(SS)}$	-	-	1	-	-	-	-

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:	•			Page:

MetroWest

4 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	2	50	4			6.00 to 18.00	30 secs	-	-	-	-	-	-	-	-	-	-
BH1	2	50	4 (2)	18.00		6.00 to 18.00	11/12/2015 10:57:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH1	2	50	4 (2)			6.00 to 18.00	15 secs	-	-	-	-	0.4	0.0	20.8	-	0.0	0.0
BH1	2	50	4 (2)			6.00 to 18.00	30 secs	-	-	-	-	0.4	0.0	20.8	-	0.0	0.0
BH1	2	50	4(2)			6.00 to 18.00	60 secs	-	-	-	-	0.4	0.0	20.8	-	0.0	0.0
BH1	2	50	4(2)			6.00 to 18.00	90 secs	-	_	-	-	0.3	0.0	20.9	-	0.0	0.0
BH1	2	50	4(2)			6.00 to 18.00	120 secs	-	-	-	-	0.3	0.0	20.9	-	0.0	0.0
BH1	2	50	4 (2)			6.00 to 18.00	180 secs	-		-	-	0.2	0.0	20.9	-	0.0	0.0
BH1	2	50	4 (2)			6.00 to 18.00	240 secs		-	-	-	0.2	0.0	20.9	-	0.0	0.0
BH1	2	50	4 (2)			6.00 to 18.00	300 secs	>	-	-	-	0.2	0.0	20.9	-	0.0	0.0
BH1	2	50	4 (3)	18.00	18.63	6.00 to 18.00	11/12/2015 11:03:00	-	-	-	2.12	-	-	-	-	-	-
BH1	1	19	4	5.00		1.00 to 5.00	11/12/2015 11:05:00	1022	1022	0.1 _(I)	-	-	-	-	-	-	-
	R	Remarks	: Original	paperworl	k disintegi	rated											
BH1	2	50	5	18.00		6.00 to 18.00	16/12/2015 08:38:00	1015	1015	-8.7 _(I)	-	-	-	-	-	-	-
BH1	2	50	5			6.00 to 18.00	660 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH1	2	50	5 (2)	18.00		6.00 to 18.00	16/12/2015 08:52:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	15 secs	-	-	-	-	0.2	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	30 secs	-	-	-	-	0.2	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	60 secs	-	-	-	-	0.3	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	90 secs	-	-	-	-	0.3	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	120 secs	-	-	-	-	0.3	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	180 secs	-	-	-	-	0.3	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	240 secs	-	-	-	-	0.3	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	300 secs	-	-	-	-	0.2	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (2)			6.00 to 18.00	360 secs	-	-	-	-	0.2	0.0	20.9	-	1.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

5 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	2	50	5 (2)			6.00 to 18.00	420 secs	-	-	-	-	0.2	0.0	20.9	-	1.0	0.0
BH1	2	50	5 (3)	18.00	18.58	6.00 to 18.00	16/12/2015 09:00:00	-	-	-	1.95	-	-	-	-	-	-
BH1	1	19	5	5.00		1.00 to 5.00	16/12/2015 09:05:00	1016	1016	0.0 _(I)	-	-	-	-	-	-	-
BH1	1	19	5			1.00 to 5.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH1	1	19	5 (2)	5.00		1.00 to 5.00	16/12/2015 09:07:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	15 secs	-		•	-	2.7	0.0	18.9	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	30 secs	-	-	-	-	2.7	0.0	17.5	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	60 secs	-		-	-	2.8	0.0	17.4	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	90 secs		-	-	-	2.8	0.0	17.4	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	120 secs	>	-	-	-	2.9	0.0	17.2	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	180 secs	-	-	-	-	2.8	0.0	17.4	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	240 secs	-	_	-	-	2.7	0.0	17.6	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	300 secs		-	-	-	2.6	0.0	17.9	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	360 secs	-	-	-	-	2.4	0.0	18.2	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	420 secs	-	-	-	-	2.2	0.0	18.6	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	480 secs	-	-	-	-	2.1	0.0	18.9	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	540 secs	-	-	-	-	2.0	0.0	19.2	-	0.0	0.0
BH1	1	19	5 (2)			1.00 to 5.00	600 secs	-	-	-	-	1.9	0.0	19.4	-	0.0	0.0
BH1	1	19	5 (3)	5.00	4.85	1.00 to 5.00	16/12/2015 09:18:00	-	-	-	1.96	-	-	-	-	-	-
BH1	2	50	6	18.00		6.00 to 18.00	08/01/2016 12:05:00	996	996	0.1 _(I)	-	-	-	-	-	-	-
BH1	2	50	6			6.00 to 18.00	120 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH1	2	50	6 (2)	18.00		6.00 to 18.00	08/01/2016 12:08:00	-	_	-	-	0.0	0.0	20.9	-	0.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	15 secs	-	-	-	-	0.7	0.0	20.4	-	1.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	30 secs	-	-	-	-	0.6	0.0	20.0	-	1.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	60 secs	-	-	-	-	0.5	0.0	20.0	-	1.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

6 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH1	2	50	6 (2)			6.00 to 18.00	90 secs	-	-	-	-	0.5	0.0	20.1	-	0.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	120 secs	-	-	-	-	0.4	0.0	20.2	-	0.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	180 secs	-	-	-	-	0.4	0.0	20.3	-	0.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	240 secs	-	-	-	-	0.3	0.0	20.3	-	0.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	300 secs	-	-	-	-	0.3	0.0	20.3	-	0.0	0.0
BH1	2	50	6 (2)			6.00 to 18.00	360 secs	-	_	-	-	0.3	0.0	20.4	-	0.0	0.0
BH1	2	50	6 (3)	18.00	18.60	6.00 to 18.00	08/01/2016 12:15:00	-	-	-	1.60	-	-	-	-	-	-
BH1	1	19	6	5.00		1.00 to 5.00	08/01/2016 12:21:00	996	996	0.0(1)	-	-	-	-	-	-	-
BH1	1	19	6			1.00 to 5.00	30 secs		-	0.0 _(SS)	-	-	-	-	-	-	-
BH1	1	19	6 (2)	5.00		1.00 to 5.00	08/01/2016 12:22:00	- 🔊	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	15 secs	1	-	-	-	1.0	0.0	20.4	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	30 secs	-	-	-	-	1.1	0.0	19.8	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	60 secs		-	-	-	1.2	0.0	19.6	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	90 secs	-	-	-	-	1.2	0.0	19.6	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	120 secs	-	-	-	-	1.2	0.0	19.6	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	180 secs	-	-	-	-	1.1	0.0	19.7	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	240 secs	-	-	-	-	1.1	0.0	19.8	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	300 secs	-	-	-	-	1.0	0.0	19.9	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	360 secs	-	-	-	-	1.0	0.0	19.9	-	0.0	0.0
BH1	1	19	6 (2)			1.00 to 5.00	420 secs	-	-	-	-	1.0	0.0	20.0	-	0.0	0.0
BH1	1	19	6 (3)	5.00	4.85	1.00 to 5.00	08/01/2016 12:30:00	-	-	-	1.60	-	-	-	-	-	-
BH2	1	50	1	19.80		1.00 to 19.80	19/11/2015 13:25:00	1010	1011	0.4 _(I)	-	-	-	-	-	-	-
BH2	1	50	1			1.00 to 19.80	30 secs	-	-	0.1 _(SS)	-	-	-	-	-	-	-
BH2	1	50	1 (2)	19.80		1.00 to 19.80	19/11/2015 13:26:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:	•			Page:

MetroWest

of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH2	1	50	1 (2)			1.00 to 19.80	15 secs	-	-	-	-	3.4	0.0	19.4	0.0	1.0	0.0
BH2	1	50	1 (2)			1.00 to 19.80	30 secs	-	-	-	-	3.4	0.0	18.3	0.0	1.0	0.0
BH2	1	50	1 (2)			1.00 to 19.80	60 secs	-	-	-	-	3.4	0.0	18.2	0.0	1.0	0.0
BH2	1	50	1 (2)			1.00 to 19.80	90 secs	-	-	•	1	3.4	0.0	18.2	0.0	1.0	0.0
BH2	1	50	1 (2)			1.00 to 19.80	120 secs	-	-	-	-	3.3	0.0	18.2	0.0	1.0	0.0
BH2	1	50	1 (2)			1.00 to 19.80	180 secs	-	-	-	-	3.0	0.0	18.4	0.0	1.0	0.0
BH2	1	50	1 (2)			1.00 to 19.80	240 secs	-	-	-	-	2.7	0.0	18.5	0.0	0.0	1.0
BH2	1	50	1 (2)			1.00 to 19.80	300 secs	-		-	-	2.5	0.0	18.6	0.0	0.0	0.0
BH2	1	50	1 (2)			1.00 to 19.80	360 secs		-	-	ı	2.3	0.0	18.7	0.0	0.0	1.0
BH2	1	50	1 (2)			1.00 to 19.80	420 secs		-	-	-	2.2	0.0	18.7	0.0	0.0	1.0
BH2	1	50	1 (2)			1.00 to 19.80	480 secs	-	-	-	-	2.1	0.0	18.8	0.0	0.0	1.0
BH2	1	50	1 (2)			1.00 to 19.80	540 secs	-	-	-	-	2.0	0.0	18.9	0.0	0.0	1.0
BH2	1	50	1 (2)			1.00 to 19.80	600 secs	-	-	-	-	1.9	0.0	18.9	0.0	0.0	1.0
BH2	1	50	1 (3)	19.80	19.02	1.00 to 19.80	19/11/2015 13:37:00	-	-	-	1.70	-	-	-	-	-	-
BH2	1	50	2	19.80		1.00 to 19.80	24/11/2015 09:15:00	1011	1011	$0.0_{(I)}$	ı	ı	-	-	-	-	-
BH2	1	50	2			1.00 to 19.80	30 secs	-	-	0.0 _(SS)	1	ı	-	-	-	-	-
BH2	1	50	2(2)	19.80		1.00 to 19.80	24/11/2015 09:16:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
BH2	1	50	2(2)			1.00 to 19.80	15 secs	-	-	-	-	1.3	0.3	20.6	6.0	1.0	0.0
BH2	1	50	2(2)			1.00 to 19.80	30 secs	-	-	-	-	1.3	0.3	20.4	6.0	1.0	0.0
BH2	1	50	2(2)			1.00 to 19.80	60 secs	-	-	-	1	1.1	0.2	20.5	4.0	1.0	0.0
BH2	1	50	2 (2)			1.00 to 19.80	90 secs	-	-	-	-	0.8	0.1	20.7	2.0	0.0	0.0
BH2	1	50	2 (2)			1.00 to 19.80	120 secs	-	-	-	-	0.7	0.1	20.7	2.0	0.0	0.0
BH2	1	50	2 (2)			1.00 to 19.80	180 secs	-	-	-	-	0.6	0.1	20.8	2.0	0.0	0.0
BH2	1	50	2 (2)			1.00 to 19.80	240 secs	-	-	-	-	0.6	0.1	20.8	2.0	0.0	0.0
BH2	1	50	2 (2)			1.00 to 19.80	300 secs	-	-	-	-	0.5	0.1	20.9	2.0	0.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

8 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH2	1	50	2 (3)	19.80		1.00 to 19.80	24/11/2015 09:22:00	-	-	-	-	-	-	-	-	-	-
	F	Remarks	s: Samples	taken.													
BH2	1	50	3	19.80		1.00 to 19.80	02/12/2015 10:50:00	1020	1020	0.3 _(I)	-	1	-	-	-	-	-
BH2	1	50	3			1.00 to 19.80	30 secs	-	-	0.0 _(SS)	1	1	-	-	-	-	-
BH2	1	50	3 (2)	19.80		1.00 to 19.80	02/12/2015 10:51:00	-	-	-	1	0.0	0.0	20.9	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	15 secs	-	_	-	-	1.1	0.0	20.3	-	2.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	30 secs	-	-	-	1	1.1	0.0	20.2	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	60 secs	-	-	-	-	0.8	0.0	20.3	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	90 secs		-	-	-	0.6	0.0	20.4	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	120 secs		-	-	-	0.5	0.0	20.5	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	180 secs		-	-	-	0.4	0.0	20.5	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	240 secs	-	-	-	-	0.3	0.0	20.6	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	300 secs	-	-	-	1	0.3	0.0	20.6	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	360 secs	-	-	-	-	0.4	0.0	20.5	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	420 secs	-	-	-	-	0.4	0.0	20.5	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	480 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	540 secs	-	-	-	-	0.3	0.0	20.5	-	0.0	0.0
BH2	1	50	3 (2)			1.00 to 19.80	600 secs	-	-	-	1	0.4	0.0	20.5	-	0.0	0.0
BH2	1	50	3 (3)	19.80	19.05	1.00 to 19.80	02/12/2015 11:02:00	-	-	-	1.74	1	-	-	-	-	-
BH2	1	50	4	19.80		1.00 to 19.80	11/12/2015 10:45:00	1022	1022	$0.0_{(I)}$	-	-	-	-	-	-	-
BH2	1	50	4			1.00 to 19.80	30 secs	-	-	0.0 _(SS)	-	1	-	-	-	-	-
BH2	1	50	4 (2)	19.80		1.00 to 19.80	11/12/2015 10:47:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH2	1	50	4 (2)			1.00 to 19.80	15 secs	-	-	-	-	2.2	0.0	20.5	-	0.0	0.0
BH2	1	50	4 (2)			1.00 to 19.80	30 secs	-	-	-	-	2.2	0.0	20.1	-	0.0	0.0
BH2	1	50	4 (2)			1.00 to 19.80	60 secs	-	-	-	-	1.8	0.1	20.1	-	0.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH2	1	50	4 (2)			1.00 to 19.80	90 secs	-	-	-	-	1.2	0.1	20.5	-	0.0	0.0
BH2	1	50	4 (2)			1.00 to 19.80	120 secs	-	-	-	-	1.0	0.0	20.6	-	0.0	0.0
BH2	1	50	4 (2)			1.00 to 19.80	180 secs	-	-	-	-	0.9	0.0	20.7	-	0.0	0.0
BH2	1	50	4 (2)			1.00 to 19.80	240 secs	-	-	-	-	0.9	0.0	20.7	-	0.0	0.0
BH2	1	50	4(2)			1.00 to 19.80	300 secs	-	-	-	-	0.9	0.0	20.7	-	0.0	0.0
BH2	1	50	4 (3)	19.80	19.00	1.00 to 19.80	11/12/2015 10:53:00	-	_	•	1.67	-	-	-	-	-	-
BH2	1	50	5	19.80		1.00 to 19.80	16/12/2015 09:27:00	1017	1017	$0.0_{(I)}$	-	-	-	-	-	-	-
BH2	1	50	5			1.00 to 19.80	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH2	1	50	5 (2)	19.80		1.00 to 19.80	16/12/2015 09:30:00		-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	15 secs	>	_	-	-	0.2	0.0	20.9	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	30 secs		-	-	-	0.2	0.0	20.9	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	60 secs	-	_	-	-	0.2	0.0	20.8	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	90 secs		-	-	-	0.2	0.0	20.8	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	120 secs	-	-	-	-	0.2	0.0	20.8	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	180 secs	-	-	-	-	0.2	0.0	20.7	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	240 secs	-	-	-	-	0.2	0.0	20.8	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	300 secs	-	-	-	-	0.2	0.0	20.8	-	0.0	0.0
BH2	1	50	5 (2)			1.00 to 19.80	360 secs	-	-	-	-	0.2	0.0	20.8	-	0.0	0.0
BH2	1	50	5 (3)	19.80	19.00	1.00 to 19.80	16/12/2015 09:37:00	-	-	-	1.64	-	-	-	-	-	-
BH2	1	50	6	19.80		1.00 to 19.80	08/01/2016 12:37:00	997	996	$0.0_{(I)}$	-	-	-	-	-	-	-
BH2	1	50	6			1.00 to 19.80	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH2	1	50	6 (2)	19.80		1.00 to 19.80	08/01/2016 12:41:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	15 secs	-	-	-	-	2.5	0.0	20.5	-	1.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	30 secs	-	-	-	-	2.6	0.0	19.4	-	1.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	60 secs	-	-	-	-	1.6	0.0	20.0	-	1.0	0.0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

10 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH2	1	50	6 (2)			1.00 to 19.80	90 secs	-	-	-	-	0.9	0.0	20.4	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	120 secs	-	-	-	-	0.7	0.0	20.5	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	180 secs	-	-	-	-	0.7	0.0	20.6	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	240 secs	-	-	-	-	0.6	0.0	20.6	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	300 secs	-	-	-	1	0.7	0.0	20.6	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	360 secs	-		-	ı	0.6	0.0	20.6	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	420 secs	-	-	-	-	0.6	0.0	20.6	-	0.0	0.0
BH2	1	50	6 (2)			1.00 to 19.80	480 secs	-	-	-	ı	0.6	0.0	20.6	-	0.0	0.0
BH2	1	50	6 (3)	19.80	19.07	1.00 to 19.80	08/01/2016 12:50:00		-	-	1.29	-	-	-	-	-	-
ВН3В	1	50	1	13.00		1.00 to 13.00	19/11/2015 11:05:00	-	-0.05	$0.0_{(I)}$	-	-	-	-	-	-	-
ВН3В	1	50	1			1.00 to 13.00	30 secs	-	-	0.0 _(SS)	ı	-	-	-	-	-	-
ВН3В	1	50	1 (2)	13.00		1.00 to 13.00	19/11/2015 11:06:00		-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	15 secs	-	-	-	-	1.4	0.0	19.1	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	30 secs	-	-	-	ı	1.4	0.0	17.3	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	60 secs	-	-	-	-	1.4	0.0	17.1	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	90 secs	-	-	-	-	1.4	0.0	17.1	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	120 secs	-	-	-	-	1.4	0.0	17.0	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	180 secs	-	-	-	-	1.4	0.0	16.9	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	240 secs	-	-	-	-	1.4	0.0	16.8	0.0	0.0	0.0
ВН3В	1	50	1 (2)			1.00 to 13.00	300 secs	-	-	-	-	1.3	0.0	16.8	0.0	0.0	0.0
ВН3В	1	50	1 (3)	13.00	12.78	1.00 to 13.00	19/11/2015 11:12:00	-	-	-	4.37	-	-	-	-	-	-
ВН3В	1	50	2	13.00		1.00 to 13.00	24/11/2015 13:05:00	1011	1011	$0.0_{(I)}$	ı	-	-	-	-	-	-
ВН3В	1	50	2			1.00 to 13.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
ВН3В	1	50	2 (2)	13.00		1.00 to 13.00	24/11/2015 13:06:00	-	-	-	_	0.1	0.0	20.9	0.0	0.0	0.0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

and a	S

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

730673

11 of 21

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
ВН3В	1	50	2 (2)			1.00 to 13.00	15 secs	-	-	-	-	1.8	0.0	18.4	0.0	0.0	0.0
ВН3В	1	50	2 (2)			1.00 to 13.00	30 secs	-	-	-	-	1.8	0.0	17.4	0.0	0.0	0.0
ВН3В	1	50	2 (2)			1.00 to 13.00	60 secs	-	-	1	-	1.8	0.0	17.4	0.0	0.0	0.0
ВН3В	1	50	2 (2)			1.00 to 13.00	90 secs	-	-	-	-	1.8	0.0	17.4	0.0	0.0	0.0
внзв	1	50	2(2)			1.00 to 13.00	120 secs	-	-	•	1	1.8	0.0	17.4	0.0	0.0	0.0
внзв	1	50	2 (2)			1.00 to 13.00	180 secs	-		1	ı	1.8	0.0	17.4	0.0	0.0	0.0
ВН3В	1	50	2 (2)			1.00 to 13.00	240 secs	-	-	•	-	1.8	0.0	17.5	0.0	0.0	0.0
ВН3В	1	50	2 (2)			1.00 to 13.00	300 secs	-	-	-	-	1.7	0.0	17.6	0.0	0.0	0.0
ВН3В	1	50	2 (2)			1.00 to 13.00	360 secs	_	-	-	-	1.7	0.0	17.7	0.0	0.0	0.0
ВН3В	1	50	2 (3)	13.00	12.79	1.00 to 13.00	24/11/2015 13:13:00	>	-	-	4.44	-	-	-	-	-	-
	R	Remarks	: Samples	taken													
ВН3В	1	50	3	13.00		1.00 to 13.00	02/12/2015 08:23:00	1019	1019	$0.0_{(I)}$	-	-	-	-	-	-	-
ВН3В	1	50	3			1.00 to 13.00	30 secs		-	$0.0_{(SS)}$	-	-	-	-	-	-	-
ВН3В	1	50	3 (2)	13.00		1.00 to 13.00	02/12/2015 08:24:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	15 secs	-	-	-	-	1.7	0.0	18.6	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	30 secs	-	-	-	-	1.7	0.0	17.7	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	60 secs	-	-	-	-	1.7	0.0	17.6	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	90 secs	-	-	-	-	1.7	0.0	17.6	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	120 secs	-	-	-	-	1.7	0.0	17.6	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	180 secs	-	-	-	-	1.7	0.0	17.6	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	240 secs	-	-	-	-	1.7	0.0	17.6	-	0.0	0.0
ВН3В	1	50	3 (2)			1.00 to 13.00	300 secs	-	-	-	-	1.7	0.0	17.7	-	0.0	0.0
ВН3В	1	50	3 (3)	13.00	12.79	1.00 to 13.00	02/12/2015 08:30:00	-	-	-	4.17	-	-	-	-	-	-
ВН3В	1	50	4	13.00		1.00 to 13.00	11/12/2015 10:10:00	1021	1021	$0.0_{(I)}$	-	-	-	-	-	-	-
ВН3В	1	50	4			1.00 to 13.00	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:	•			Page:

MetroWest

12 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
ВН3В	1	50	4 (2)	13.00		1.00 to 13.00	11/12/2015 10:11:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
ВН3В	1	50	4 (2)			1.00 to 13.00	15 secs	-	-	-	-	2.3	0.0	19.7	-	0.0	0.0
ВН3В	1	50	4 (2)			1.00 to 13.00	30 secs	-	-	-	-	2.3	0.0	17.9	-	0.0	0.0
ВН3В	1	50	4 (2)			1.00 to 13.00	60 secs	-	-	-	-	2.3	0.0	17.9	-	0.0	0.0
ВН3В	1	50	4(2)			1.00 to 13.00	90 secs	-	-	-	-	2.3	0.0	17.9	-	0.0	0.0
ВН3В	1	50	4(2)			1.00 to 13.00	120 secs	-		•	-	2.3	0.0	17.8	-	0.0	0.0
ВН3В	1	50	4 (2)			1.00 to 13.00	180 secs	-	-	-	-	2.3	0.0	17.9	-	0.0	0.0
ВН3В	1	50	4 (2)			1.00 to 13.00	240 secs	-		-	-	2.3	0.0	17.9	-	0.0	0.0
ВН3В	1	50	4 (2)			1.00 to 13.00	300 secs		-	-	-	2.3	0.0	18.0	-	0.0	0.0
ВН3В	1	50	4 (3)	13.00	12.78	1.00 to 13.00	11/12/2015 10:17:00		-	-	4.25	-	-	-	-	-	-
ВН3В	1	50	5	13.00		1.00 to 13.00	16/12/2015 10:05:00	1017	1017	$0.0_{(I)}$	-	-	-	-	-	-	-
ВН3В	1	50	5			1.00 to 13.00	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
ВН3В	1	50	5 (2)	13.00		1.00 to 13.00	16/12/2015 10:07:00		-	-	-	0.0	0.0	20.9	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	15 secs	-	-	-	-	2.1	0.0	18.9	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	30 secs	-	-	-	-	2.2	0.0	17.7	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	60 secs	-	-	-	-	2.2	0.0	17.6	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	90 secs	-	-	-	-	2.2	0.0	17.6	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	120 secs	-	-	-	-	2.2	0.0	17.6	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	180 secs	-	-	-	-	2.2	0.0	17.5	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	240 secs	-	-	-	-	2.2	0.0	17.5	-	0.0	0.0
ВН3В	1	50	5 (2)			1.00 to 13.00	300 secs	-	-	-	-	2.2	0.0	17.5	-	0.0	0.0
ВН3В	1	50	5 (3)	13.00	12.79	1.00 to 13.00	16/12/2015 10:13:00	-	-	-	4.01	-	-	-	-	-	-
ВН3В	1	50	6	13.00		1.00 to 13.00	08/01/2016 11:35:00	996	996	$0.0_{(I)}$	-	-	-	-	-	-	-
ВН3В	1	50	6			1.00 to 13.00	60 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
ВН3В	1	50	6 (2)	13.00		1.00 to 13.00	08/01/2016 11:38:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

13 of 21

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
ВН3В	1	50	6 (2)			1.00 to 13.00	15 secs	-	-	-	-	1.6	0.0	19.9	-	0.0	0.0
ВН3В	1	50	6 (2)			1.00 to 13.00	30 secs	-	-	-	-	1.6	0.0	18.5	-	0.0	0.0
ВН3В	1	50	6 (2)			1.00 to 13.00	60 secs	-	-	-	-	1.6	0.0	18.4	-	0.0	0.0
ВН3В	1	50	6 (2)			1.00 to 13.00	90 secs	-	-	-	-	1.6	0.0	18.4	-	0.0	0.0
ВН3В	1	50	6 (2)			1.00 to 13.00	120 secs	-	-	-	-	1.6	0.0	18.5	-	0.0	0.0
ВН3В	1	50	6 (2)			1.00 to 13.00	180 secs	-	-	•	-	1.5	0.0	18.5	-	0.0	0.0
ВН3В	1	50	6 (2)			1.00 to 13.00	240 secs	-	-	-	-	1.5	0.0	18.5	-	0.0	0.0
ВН3В	1	50	6 (2)			1.00 to 13.00	300 secs	-	-	-	-	1.5	0.0	18.6	-	0.0	0.0
ВН3В	1	50	6 (3)	13.00	12.79	1.00 to 13.00	08/01/2016 11:44:00		-	-	3.44	-	-	-	-	-	-
BH4	1	50	1	10.50		1.50 to 10.50	19/11/2015 09:00:00	1010	1010	-0.1 _(I)	-	-	-	-	-	-	-
BH4	1	50	1			1.50 to 10.50	30 secs	-	_	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH4	1	50	1 (2)	10.50		1.50 to 10.50	19/11/2015 09:01:00		-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	15 secs	-	-	-	-	0.1	0.0	20.9	0.0	140.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	30 secs	-	-	-	-	0.1	0.0	20.9	0.0	97.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	60 secs	-	-	-	-	0.1	0.0	20.9	0.0	37.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	90 secs	-	-	-	-	0.1	0.0	20.9	0.0	23.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	120 secs	-	-	-	-	0.1	0.0	20.9	0.0	15.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	180 secs	-	-	-	-	0.1	0.0	20.9	0.0	8.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	240 secs	-	-	-	-	0.1	0.0	20.9	0.0	8.0	0.0
BH4	1	50	1 (2)			1.50 to 10.50	300 secs	-	-	-	-	0.1	0.0	20.9	0.0	7.0	0.0
BH4	1	50	1 (3)	10.50	10.63	1.50 to 10.50	19/11/2015 09:07:00	-	-	-	3.01	-	-	-	-	-	-
BH4	1	50	2	10.50		1.50 to 10.50	24/11/2015 14:35:00	1007	1007	-0.6 _(I)	-	-	-	-	-	-	-
BH4	1	50	2			1.50 to 10.50	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH4	1	50	2 (2)	10.50		1.50 to 10.50	24/11/2015 14:36:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

14 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH4	1	50	2 (2)			1.50 to 10.50	15 secs	-	-	-	-	0.1	0.0	19.6	0.0	>500	1.0
BH4	1	50	2 (2)			1.50 to 10.50	30 secs	-	-	-	-	0.1	0.0	19.8	0.0	348.0	1.0
BH4	1	50	2 (2)			1.50 to 10.50	60 secs	-	-	-	-	0.1	0.0	20.5	0.0	130.0	1.0
BH4	1	50	2 (2)			1.50 to 10.50	90 secs	-	-	-	-	0.1	0.0	20.7	0.0	87.0	1.0
BH4	1	50	2 (2)			1.50 to 10.50	120 secs	-	-	-	-	0.1	0.0	20.7	0.0	73.0	1.0
BH4	1	50	2 (2)			1.50 to 10.50	180 secs	-	_	-	-	0.1	0.0	20.8	0.0	52.0	0.0
BH4	1	50	2 (2)			1.50 to 10.50	240 secs	-	-	-	-	0.1	0.0	20.9	0.0	48.0	0.0
BH4	1	50	2 (2)			1.50 to 10.50	300 secs	-	-	-	-	0.1	0.0	20.9	0.0	39.0	0.0
BH4	1	50	2 (3)	10.50	10.40	1.50 to 10.50	24/11/2015 14:42:00		-	-	3.57	-	-	-	-	-	-
	R	Remarks	: Samples	taken. Wa	ater level 6	5.11m depth at	fter sampling.										
BH4	1	50	3	10.50		1.50 to 10.50	02/12/2015 09:00:00	1018	1018	$0.0_{(I)}$	-	-	1	-	-	-	-
BH4	1	50	3			1.50 to 10.50	30 secs	-	_	0.0 _(SS)	-	-	1	-	-	-	-
BH4	1	50	3 (2)	10.50		1.50 to 10.50	02/12/2015 09:01:00		-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	15 secs	-	-	-	-	0.2	0.0	14.3	-	173.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	30 secs	-	-	-	-	0.2	0.0	13.9	-	151.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	60 secs	-	-	-	-	0.2	0.0	15.0	-	127.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	90 secs	-	-	-	-	0.2	0.0	15.3	-	123.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	120 secs	-	-	-	-	0.2	0.0	15.4	-	121.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	180 secs	-	-	-	-	0.2	0.0	15.3	-	119.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	240 secs	-	-	-	-	0.2	0.0	15.2	-	112.0	0.0
BH4	1	50	3 (2)			1.50 to 10.50	300 secs	-	-	-	-	0.2	0.0	13.7	-	84.0	0.0
BH4	1	50	3 (3)	10.50	10.46	1.50 to 10.50	02/12/2015 09:07:00	-	-	-	3.54	-	-	-	-	-	-
BH4	1	50	4	10.50		1.50 to 10.50	11/12/2015 09:30:00	1021	1021	$0.0_{(I)}$	-	-	-	-	-	-	-
BH4	1	50	4			1.50 to 10.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH4	1	50	4 (2)	10.50		1.50 to 10.50	11/12/2015 09:32:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:	•			Page:

MetroWest

730673

15 of 21

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH4	1	50	4 (2)			1.50 to 10.50	15 secs	-	-	-	-	0.4	0.0	17.8	-	0.0	0.0
BH4	1	50	4 (2)			1.50 to 10.50	30 secs	-	-	-	-	0.3	0.0	15.8	-	0.0	0.0
BH4	1	50	4 (2)			1.50 to 10.50	60 secs	-	-	-	-	0.3	0.0	16.4	-	1.0	0.0
BH4	1	50	4 (2)			1.50 to 10.50	90 secs	-	-	-	-	0.3	0.0	16.5	-	1.0	0.0
BH4	1	50	4 (2)			1.50 to 10.50	120 secs	-	-	-	-	0.3	0.0	16.6	-	1.0	0.0
BH4	1	50	4 (2)			1.50 to 10.50	180 secs	-	_	-	-	0.3	0.0	16.6	-	1.0	0.0
BH4	1	50	4 (2)			1.50 to 10.50	240 secs	-	-	-	-	0.3	0.0	16.6	-	1.0	0.0
BH4	1	50	4 (2)			1.50 to 10.50	300 secs	-	-	-	-	0.3	0.0	16.3	-	1.0	0.0
BH4	1	50	4 (3)	10.50	10.33	1.50 to 10.50	11/12/2015 09:38:00	12	-	-	3.85	-	-	-	-	-	-
BH4	1	50	5	10.50		1.50 to 10.50	16/12/2015 10:29:00	1016	1016	$0.0_{(I)}$	-	-	-	-	-	-	-
BH4	1	50	5			1.50 to 10.50	30 secs		-	0.0 _(SS)	-	-	-	-	-	-	-
BH4	1	50	5 (2)	10.50		1.50 to 10.50	16/12/2015 10:33:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	15 secs	-	-	-	-	0.6	0.0	15.8	-	1.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	30 secs	-	-	-	-	0.5	0.0	14.6	-	1.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	60 secs	-	-	-	-	0.4	0.0	16.7	-	1.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	90 secs	-	-	-	-	0.3	0.0	16.8	-	1.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	120 secs	-	-	-	-	0.3	0.0	16.7	-	1.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	180 secs	-	-	-	-	0.4	0.0	16.5	-	1.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	240 secs	-	-	-	-	0.4	0.0	16.4	-	1.0	0.0
BH4	1	50	5 (2)			1.50 to 10.50	300 secs	-	-	-	-	0.4	0.0	16.3	-	1.0	0.0
BH4	1	50	5 (3)	10.50	10.42	1.50 to 10.50	16/12/2015 10:39:00	-	-	-	3.68	-	-	-	-	-	-
BH4	1	50	6	10.50		1.50 to 10.50	08/01/2016 10:41:00	994	994	0.0(1)	-	-	-	-	-	-	-
BH4	1	50	6			1.50 to 10.50	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH4	1	50	6 (2)	10.50		1.50 to 10.50	08/01/2016 10:42:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	15 secs	-	-	-	-	1.5	0.0	18.5	-	0.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

16 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH4	1	50	6 (2)			1.50 to 10.50	30 secs	-	-	-	-	1.2	0.0	14.8	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	60 secs	-	-	-	-	1.0	0.0	15.7	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	90 secs	-	-	-	-	0.9	0.0	16.2	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	120 secs	-	-	-	-	0.9	0.0	16.3	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	180 secs	-	-	-	-	1.0	0.0	16.0	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	240 secs	-	_	-	-	0.9	0.0	16.3	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	300 secs	-	-	-	-	1.0	0.0	16.1	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	360 secs	-	-	-	-	1.1	0.0	15.1	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	420 secs		-	-	-	1.2	0.0	14.5	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	480 secs		-	-	-	1.2	0.0	14.6	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	540 secs	-	-	-	-	1.2	0.0	14.9	-	0.0	0.0
BH4	1	50	6 (2)			1.50 to 10.50	600 secs	-	-	-	-	1.2	0.0	14.9	-	0.0	0.0
BH4	1	50	6 (3)	10.50	10.40	1.50 to 10.50	08/01/2016 10:53:00	-	-	-	3.17	-	-	-	-	-	-
BH5	1	50	2	6.00		3.00 to 6.00	24/11/2015 15:00:00	1007	1008	0.4 _(I)	-	-	-	-	-	-	-
BH5	1	50	2			3.00 to 6.00	30 secs	-	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH5	1	50	2 (2)	6.00		3.00 to 6.00	24/11/2015 15:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0.0	0.0
BH5	1	50	2(2)			3.00 to 6.00	15 secs	-	-	1	-	0.0	0.0	20.8	0.0	42.0	0.0
BH5	1	50	2(2)			3.00 to 6.00	30 secs	-	-	1	-	0.1	0.0	20.5	0.0	50.0	0.0
BH5	1	50	2 (2)			3.00 to 6.00	60 secs	-	-	-	-	0.1	0.0	20.4	0.0	51.0	0.0
BH5	1	50	2 (2)			3.00 to 6.00	90 secs	-	-	-	-	0.1	0.0	20.2	0.0	55.0	0.0
BH5	1	50	2 (2)			3.00 to 6.00	120 secs	-	-	ı	-	0.1	0.0	20.0	0.0	58.0	0.0
BH5	1	50	2 (2)			3.00 to 6.00	180 secs	-	-	-	-	0.2	0.0	19.2	0.0	57.0	0.0
BH5	1	50	2 (2)			3.00 to 6.00	240 secs	-	-	-	-	0.2	0.0	18.5	0.0	47.0	0.0
BH5	1	50	2 (2)			3.00 to 6.00	300 secs	-	-	-	-	0.2	0.0	17.7	0.0	29.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

17 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH5	1	50	2 (3)	6.00	6.01	3.00 to 6.00	24/11/2015 15:07:00	-	-	-	5.44	-	-	-	-	-	-
	R	emarks	: No samp	les taken.													
BH5	1	50	3	6.00		3.00 to 6.00	02/12/2015 09:30:00	1018	1018	1.7 _(I)	-	-	-	-	-	-	-
BH5	1	50	3			3.00 to 6.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH5	1	50	3 (2)	6.00		3.00 to 6.00	02/12/2015 09:31:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	15 secs	-	_	•	-	0.5	0.0	17.0	-	19.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	30 secs	-	-	-	-	0.5	0.0	15.9	-	23.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	60 secs	-		-	-	0.5	0.0	15.7	-	23.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	90 secs		-	-	-	0.5	0.0	15.7	-	23.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	120 secs	- /	_	-	-	0.5	0.0	15.7	-	22.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	180 secs		-	-	-	0.5	0.0	15.6	-	19.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	240 secs	-	-	-	-	0.6	0.0	15.5	-	12.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	300 secs		-	-	-	0.7	0.0	15.3	-	6.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	360 secs	-	-	-	-	1.2	0.0	14.6	-	2.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	420 secs	-	-	-	-	1.3	0.0	14.5	-	1.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	480 secs	-	-	-	-	1.3	0.0	14.4	-	1.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	540 secs	-	-	-	-	1.4	0.0	14.4	-	1.0	0.0
BH5	1	50	3 (2)			3.00 to 6.00	600 secs	-	-	-	-	1.4	0.0	14.5	-	1.0	0.0
BH5	1	50	3 (3)	6.00	6.02	3.00 to 6.00	02/12/2015 09:42:00	-	-	-	4.45	-	ı	-	-	-	-
BH5	1	50	4	6.00		3.00 to 6.00	11/12/2015 09:40:00	1021	1021	0.1 _(I)	-	-	-	-	-	-	-
BH5	1	50	4			3.00 to 6.00	30 secs	-	-	0.0 _(SS)	-	-	ı	-	-	-	-
BH5	1	50	4 (2)	6.00		3.00 to 6.00	11/12/2015 09:42:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH5	1	50	4 (2)			3.00 to 6.00	15 secs	-	-	-	-	0.9	0.0	19.4	-	0.0	0.0
BH5	1	50	4 (2)			3.00 to 6.00	30 secs	-	-	-	-	0.8	0.0	18.4	-	0.0	0.0
BH5	1	50	4(2)			3.00 to 6.00	60 secs	-	-	-	-	0.7	0.0	18.4	-	0.0	0.0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

730673

18 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH5	1	50	4 (2)			3.00 to 6.00	90 secs	-	-	-	-	0.8	0.0	18.3	-	0.0	0.0
BH5	1	50	4 (2)			3.00 to 6.00	120 secs	-	-	-	-	0.8	0.0	18.2	-	1.0	0.0
BH5	1	50	4 (2)			3.00 to 6.00	180 secs	-	-	-	-	0.8	0.0	18.0	-	0.0	0.0
BH5	1	50	4 (2)			3.00 to 6.00	240 secs	-	-	-	-	0.9	0.0	17.9	-	0.0	0.0
BH5	1	50	4 (2)			3.00 to 6.00	300 secs	-	-	-	-	0.9	0.0	17.7	-	0.0	0.0
BH5	1	50	4 (3)	6.00	6.01	3.00 to 6.00	11/12/2015 09:48:00	-	_	-	4.64	-	-	-	-	-	-
BH5	1	50	5	6.00		3.00 to 6.00	16/12/2015 10:44:00	1016	1016	$0.0_{(I)}$	-	-	-	-	-	-	-
BH5	1	50	5			3.00 to 6.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH5	1	50	5 (2)	6.00		3.00 to 6.00	16/12/2015 10:47:00	-	-	-	-	0.7	0.0	19.0	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	15 secs		-	-	-	0.6	0.0	18.9	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	30 secs	-	-	-	-	0.5	0.0	19.0	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	60 secs	-	-	-	-	0.5	0.0	19.0	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	90 secs		-	-	-	0.6	0.0	18.9	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	120 secs	-	-	-	-	0.6	0.0	18.7	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	180 secs	-	-	-	-	0.7	0.0	18.6	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	240 secs	-	-	-	-	0.7	0.0	18.4	-	1.0	0.0
BH5	1	50	5 (2)			3.00 to 6.00	360 secs	-	-	-	-	0.7	0.0	18.2	-	1.0	0.0
BH5	1	50	5 (3)	6.00	6.02	3.00 to 6.00	16/12/2015 10:54:00	-	-	•	4.57	-	-	-	-	-	-
BH5	1	50	6	6.00		3.00 to 6.00	08/01/2016 10:56:00	993	993	$0.0_{(I)}$	-	-	-	-	-	-	-
BH5	1	50	6			3.00 to 6.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH5	1	50	6 (2)	6.00		3.00 to 6.00	08/01/2016 10:58:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH5	1	50	6 (2)			3.00 to 6.00	15 secs	-	-	-	-	0.6	0.0	19.7	-	0.0	0.0
BH5	1	50	6 (2)			3.00 to 6.00	30 secs	-	-	-	-	0.4	0.0	20.0	-	0.0	0.0
BH5	1	50	6 (2)			3.00 to 6.00	60 secs	-	-	-	-	0.4	0.0	20.2	-	0.0	0.0
BH5	1	50	6 (2)			3.00 to 6.00	90 secs	-	-	-	-	0.4	0.0	20.2	-	0.0	0.0

 $\label{eq:Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5\% \ v/v.}$

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

19 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH5	1	50	6 (2)			3.00 to 6.00	120 secs	-	-	-	-	0.4	0.0	20.2	-	0.0	0.0
BH5	1	50	6 (2)			3.00 to 6.00	180 secs	-	-	-	-	0.4	0.0	20.1	-	0.0	0.0
BH5	1	50	6 (2)			3.00 to 6.00	240 secs	-	-	-	-	0.4	0.0	20.1	-	0.0	0.0
BH5	1	50	6 (2)			3.00 to 6.00	300 secs	-	-	-	-	0.4	0.0	20.0	-	0.0	0.0
BH5	1	50	6 (3)	6.00	6.02	3.00 to 6.00	08/01/2016 11:04:00	-	-	-	4.12	-	-	-	-	-	-
BH6	1	50	1	12.00	11.74	8.50 to 12.00	19/11/2015	-	-	-	9.63	-	-	-	-	-	-
	R	temarks	: Unable to	o obtain re	eadings du	e to casing be	ing flooded.										
BH6	1	50	2	12.00		8.50 to 12.00	24/11/2015 15:15:00	1008	1008	$0.0_{(I)}$	-	-	-	-	-	-	-
BH6	1	50	2			8.50 to 12.00	30 secs	>	-	$0.0_{(SS)}$	-	-	-	-	-	-	-
BH6	1	50	2 (2)	12.00		8.50 to 12.00	24/11/2015 15:16:00		-	-	-	0.1	0.0	20.9	0.0	0.0	0.0
BH6	1	50	2 (2)			8.50 to 12.00	15 secs	-	-	-	-	0.8	0.0	19.6	0.0	0.0	0.0
BH6	1	50	2 (2)			8.50 to 12.00	30 secs		-	-	-	0.9	0.0	18.7	0.0	0.0	0.0
BH6	1	50	2 (2)			8.50 to 12.00	60 secs	-	-	-	-	1.3	0.0	17.4	0.0	0.0	0.0
BH6	1	50	2 (2)			8.50 to 12.00	90 secs	-	-	-	-	1.4	0.0	17.1	0.0	0.0	0.0
BH6	1	50	2 (2)			8.50 to 12.00	120 secs	-	-	-	-	1.4	0.0	17.1	0.0	0.0	0.0
ВН6	1	50	2 (2)			8.50 to 12.00	180 secs	-	-	-	-	1.4	0.0	17.1	0.0	0.0	0.0
ВН6	1	50	2 (2)			8.50 to 12.00	240 secs	-	-	-	-	1.4	0.0	17.0	0.0	0.0	0.0
ВН6	1	50	2 (2)			8.50 to 12.00	300 secs	-	-	-	-	1.4	0.0	17.0	0.0	0.0	0.0
ВН6	1	50	2 (3)	12.00	11.93	8.50 to 12.00	24/11/2015 15:22:00	-	-	-	9.79	-	-	-	-	-	-
	R	temarks	: Samples	taken.													
ВН6	1	50	3	12.00		8.50 to 12.00	02/12/2015	-	-	-	-	-	-	-	-	-	-
	R	Remarks	: Unable to	o obtain re	eadings du	e to parked ve	hicle.										
ВН6	1	50	4	12.00		8.50 to 12.00	11/12/2015 09:30:00	-	-	-	-	-	-	-	-	-	-
	R	emarks	: Unable to	o obtain re	eadings du	e to parked ve	hicle.								· ·		

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

2	STRUCTURAL SOI
	The Old School
	Stillhouse Lane
	Bedminster
7	Bristol BS3 4EB

UCTURAL SOILS -The Old School Stillhouse Lane Bedminster

Compiled By	Date	Checked By	Date	Contrac
	13/01/16			
Contract:				Page:

MetroWest

Contract Ref:

730673

20 of **21**

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
BH6	1	50	5	12.00		8.50 to 12.00	16/12/2015	-	-	-	-	-	-	-	-	-	-
	R	Remarks	s: Unable to	o obtain re	eadings du	e to parked ve	hicle.										
BH6	1	50	6	12.00		8.50 to 12.00	08/01/2016 11:10:00	995	995	0.0 _(I)	-	-	-	-	-	-	-
BH6	1	50	6			8.50 to 12.00	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
BH6	1	50	6 (2)	12.00		8.50 to 12.00	08/01/2016 11:12:00	-	-	-	-	0.0	0.0	20.9	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	15 secs	-	_	-	-	0.4	0.0	16.4	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	30 secs	-	-	-	-	0.4	0.0	15.4	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	60 secs	-	-	-	-	0.4	0.0	14.9	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	90 secs		-	-	-	0.4	0.0	14.9	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	120 secs		-	-	-	0.4	0.0	14.8	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	180 secs	-	-	-	-	0.4	0.0	14.5	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	240 secs	-	-	-	-	0.4	0.0	14.2	-	0.0	0.0
BH6	1	50	6 (2)			8.50 to 12.00	300 secs		-	-	-	0.4	0.0	14.0	-	0.0	0.0
BH6	1	50	6 (3)	12.00	10.47	8.50 to 12.00	08/01/2016 11:18:00	-	-	-	9.53	-	-	-	-	-	-

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Compiled By	Date	Checked By	Date	Contract Ref:
	13/01/16			
Contract:				Page:

MetroWest

730673

21 of **21**

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council

6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex I Track

Ballast Testing Result

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

-	6 	Tr.		Ι ο	Ιø	1		1	1	1	1	Total	Asbestos
THC	Sample No. THLT	EL	₽	Mile	Yards							Petroleum	(presence/a
₽	gt				>							Hydrocarb	bsence)
elc	San					Arsenic	Chromium	Copper	Lead	Nickel	Zinc	ons	
Sample	"												
ισ.													
C4SL/S4UL													
Open space						79	7.71 ¹	12000	630	230	81000	3800 ²	
(res)							'.''	-2000		200	0.000	3000	
C4SL/S4UL													
Open space						170	0001	44000	1300	3400	170000	70002	
(not near						170	220 ¹	44000	1300	3400	170000	7900 ²	
residential)													
C4SL/S4UL						640	001	69000	2220	000	730000	470002	
comercial						640	33 ¹	68000	2330	980	730000	17000 ²	
ABS	2	POD	2100	120	770	1.2	27.2	107.8	123.2	79.9	360.8	45.2	nd
ABS	3	POD	1100	120	880	11.2	23.3	56.5	19.1	44.4	96.9	68.0	nd
ABS	4	POD	2100	120	990	25.6	23.2	98.0	181.4	65.9	320.0	119.5	nd
ABS	5	POD	1100	120	1100	8.2	33.6	41.3	108.2	73.1	142.8	33.4	nd
ABS	6	POD	2100	120	1210	12.0	29.6	64.9	90.6	60.8	116.9	120.8	nd
ABS SP	9	POD	1100	120	1490	15.1	28.0	71.8	143.0	72.2	265.6	89.4	nd
ABS	10	POD	1100	120 120	1501 1512	1.2	20.9 25.5	38.5 61.0	295.8 211.5	55.7 55.8	1020.1 434.4	60.4 109.1	nd nd
ABS	11	POD	2100	120	1512	25.4	21.9	74.9	249.4	74.7	415.6	50.7	nd
ABS	12	POD	1100	120	1650	21.5	28.0	73.2	160.6	59.7	195.8	187.5	nd
ABS	13	POD	2100	121	0	3.0	21.2	67.1	279.7	62.4	517.6	50.6	nd
ABS	14	POD	3100	121	95	10.7	33.0	73.2	172.7	93.9	362.1	141.9	nd
ABS	15	POD	3100	121	222	2.3	24.9	136.1	470.5	117.4	1097.8	187.7	nd
ABS	16	POD	3100	121	330	9.3	22.5	39.1	50.2	53.7	115.3	54.2	nd
ABS	17	POD	3100	121	453	9.6	19.5	88.2	47.0	50.0	97.4	235.6	nd
SP	18	POD	3100	121	550	8.1	16.3	37.0	9.9	28.2	83.3	13.0	nd
ABS SP	19 20	POD	3100 3100	121	663 770	11.4 8.1	20.9	45.7 62.1	23.8	42.7 41.9	95.2 75.6	25.5 16.8	nd nd
ABS	21	POD	3100	121	880	11.0	32.9	35.9	8.5	57.2	67.4	35.2	nd
ABS	22	POD	3100	121	1005	10.0	25.9	29.8	13.4	60.8	66.2	10.0	nd
ABS	23	POD	3100	121	1115	12.2	25.4	48.1	35.8	55.0	127.9	110.1	nd
SP	24	POD	3100	121	1225	8.6	16.5	70.4	14.3	33.6	86.2	11.0	nd
SP	25	POD	3100	121	1320	7.1	15.7	50.2	8.7	35.0	88.1	16.7	nd
ABS	26	POD	3100	121	1430	1.2	16.8	42.7	235.1	52.7	1065.7	55.6	nd
ABS	27	POD	3100	121	1525	12.7	16.5	108.4	495.6	80.4	824.1	87.1	nd
ABS ABS	28 29	POD	3100 3100	121	1650	9.8 5.3	24.0	101.5 230.9	245.4 820.5	76.4 88.7	575.6 1046.1	56.2 63.6	nd nd
ABS	30	POD	3100	122	125	29.7	27.0	77.3	102.9	56.7	119.9	43.7	nd
ABS	31	POD	3100	122	220	8.1	23.5	43.7	57.0	58.4	105.6	58.7	nd
ABS	32	POD	3100	122	330	9.7	24.5	52.0	135.0	48.2	280.3	58.5	nd
ABS	33	POD	3100	122	440	1.2	20.2	45.5	164.5	60.9	467.1	81.8	nd
ABS	34	POD	3100	122	495	2.0	20.1	64.5	341.2	63.7	773.0	57.0	nd
ABS	35	POD	3100	122	505	10.9	28.2	75.8	196.6	70.1	213.0	66.4	nd
ABS ABS	36 37	POD	3100 3100	122 122	554 564	62.4 10.2	23.5	94.4	298.0	66.5 54.3	358.0	35.7 99.8	nd
ABS	38	POD	3100	122	638	11.4	26.7 21.2	55.4 82.4	97.3 235.4	66.8	125.5 531.8	107.0	nd nd
ABS	39	POD	3100	122	713	6.1	24.1	58.1	201.7	67.7	295.1	192.2	nd
SP	40	POD	3100	122	726	1.2	14.6	34.0	442.6	68.0	1204.1	52.0	nd
ABS	41	POD	3100	122	738	9.1	13.3	19.5	52.2	41.5	94.0	18.2	nd
ABS	42	POD	3100	122	860	10.1	21.6	90.1	383.5	71.7	692.7	106.7	nd
SP	43	POD	3100	122	871	10.8	22.8	94.8	200.7	73.2	336.6	216.2	nd
ABS ABS	44 45	POD	3100 3100	122	883 990	22.8	24.2	82.0	165.8	81.7	296.3	64.7 62.4	nd
ABS	46	POD	3100	122 122	1142	10.2	4.1 28.3	93.1 34.4	788.8 44.2	132.6 50.9	1190.4 82.5	58.0	nd nd
ABS	47	POD	3100	122	1152	6.0	22.1	33.2	33.3	45.5	48.2	43.1	nd
ABS	48	POD	3100	122	1262	9.2	18.5	47.0	6.4	32.5	77.2	10.0	nd
ABS	49	POD	3100	122	1372	23.4	25.8	87.7	87.4	70.6	99.6	100.1	nd
ABS	50	POD	3100	122	1382	13.7	23.6	56.6	68.8	52.4	76.1	93.5	nd
ABS	51	POD	3100	122	1431	13.6	40.6	41.9	48.9	85.7	88.7	126.6	nd
SP	52	POD	3100	122	1440	16.5	24.4	37.9	39.9	62.2	97.8	43.3	nd
ABS	53	POD	3100	122	1448	17.3	31.2	48.0	74.9	64.5	114.2	83.7	nd
ABS	54 55	POD	3100	122	1540	26.8	40.3	58.5	95.9	96.0	149.0	54.3	nd
SP SP	56	POD	3100 3100	122 122	1605 1615	7.3	93.1 38.6	53.4 79.0	47.0 53.3	215.6 92.4	126.6 114.2	263.6 37.0	nd nd
ABS	57	POD	3100	122	1625	8.7	47.2	68.7	85.3	136.1	148.3	151.8	nd
ABS	58	POD	3100	123	0	5.3	27.2	26.6	34.3	61.3	77.7	135.2	nd
ABS	59	POD	3100	123	110	5.5	28.5	28.3	40.1	63.5	93.8	48.6	nd
ABS	60	POD	3100	123	209	5.4	39.6	17.3	26.2	77.0	66.8	31.9	nd
SP	61	POD	3100	123	219	3.5	30.3	51.7	79.2	74.3	105.2	54.9	nd

	,						_						
Sample ID THLT	Sample No. THLT	ER	l ₽	Mile	Yards							Total	Asbestos
Ĕ	글 돈	ш	-	≥	Äٍa							Petroleum	(presence/a
₽	E					l	l		l	l		Hydrocarb	bsence)
pld	Sa					Arsenic	Chromium	Copper	Lead	Nickel	Zinc	ons	
a a													
ဟ													
C4SL/S4UL													
Open space						79	7.71 ¹	12000	630	230	81000	3800 ²	
(res)													
C4SL/S4UL													
Open space						170	220 ¹	44000	1300	3400	170000	7900 ²	
(not near						1170	220	11000	1000	0400	170000	7 900	
residential)													
C4SL/S4UL													
comercial						640	33 ¹	68000	2330	980	730000	17000 ²	
ABS	63	POD	3100	123	330	10.4	25.9	50.3	81.5	62.4	130.2	118.3	nd
COP	1	POD	3100	123	353	7.2	24.9	27.1	31.1	42.7	152.0	589.7	nd
COP	2	POD	3100	123	397	1.3	34.2	23.8	129.0	66.0	179.8	37.4	nd
ABS	64	POD	3100	123	470	14.6	25.6	34.2	77.4	62.9	143.6	75.9	nd
SP	65	POD	3100	123	480	7.1	27.0	23.6	42.4	59.5	87.1	50.8	nd
ABS	66	POD	3100	123	489	16.6	23.9	48.0	55.6	72.9	141.5	40.9	nd
ABS	67	POD	3100	123	616	7.7	26.4	35.6	71.8	65.4	174.8	58.8	nd
ABS	68	POD	3100	123	717	2.2	28.0	45.5	121.3	79.0	184.6	54.4	nd
SP	69	POD	3100	123	728	4.2	23.0	47.9	121.1	56.5	183.5	60.2	nd
ABS	70	POD	3100	123	739	10.9	26.7	61.5	123.6	75.3	210.5	57.1	nd
ABS	71	POD	-	123	880	10.9	21.7	26.2	32.7	47.5	66.6	107.6	nd
ABS	72	POD	-	123	990	8.9	61.6	32.2	30	101.5	62.9	110.2	nd
ABS	73	POD	-	123	1100	7.3	21.4	32.4	48.7	55.6	83.4	98.7	nd
ABS	74 75	POD POD	+	123 123	1210	12	25.9	54.3	57.1	60.4	76.5	76.1	nd
ABS ABS	76	POD	+	123	1318 1363	12.6 11.1	37.6 25.9	66 40.1	83.4 52.1	63.9 48.1	193.6 90.8	81.2 71.2	nd nd
ABS	78	POD	+	123	1395	9.2	25.6	37.1	41.3	50.6	102.5	66.4	nd
ABS	79	POD	1-	123	1430	9.8	37.5	19.4	36.4	47.7	51.2	170.4	nd
ABS	80	POD	-	123	1540	15.4	30.8	41.8	53.7	62.9	119.9	52.8	nd
ABS	81	POD	-	123	1677	1.2	5.1	83.1	535	90.1	1517.5	298	nd
ABS	82	POD	-	123	1687	13.6	30.4	81.9	98.3	64.8	171.7	32	nd
ABS	83	POD	-	124	2	16.3	19.2	99.9	355.8	96.6	662	90.6	nd
ABS	84	POD	-	124	12	1.2	13.8	65.2	520.2	91.1	1261.1	219.8	nd
ABS	85	POD	-	124	116	7.3	25.1	35.7	170.5	58	206.5	156.1	nd
ABS	87	POD	+	124	196	28.2	25.6	108.3	149.1	96.2	293	122.3	nd
ABS ABS	88 89	POD POD	+	124 124	330 440	24.5 37.1	26.1 1.2	74 154.8	101.2 1074.1	69.9 122.3	186.6 2775.3	252 118.6	nd nd
ABS	90	POD	+	124	550	45.6	18	135.3	601.6	89.3	920.9	117	nd
ABS	91	POD		124	660	40.2	1.2	149.3	1059.6	124.2	2432.4	83	nd
ABS	92	POD		124	770	10	27.7	84.8	259.7	81.3	671.4	116.3	nd
ABS	93	POD		124	880	1.2	11.8	131.2	742.2	105.3	2681	59.8	nd
ABS	94	POD		124	990	14.6	30.7	76.7	88.3	83.9	350.8	123.3	nd
ABS	95	POD		124	1100	9.2	16.8	124.6	604.2	119.9	2664.6	77.9	nd
ABS	96	POD		124	1210	36.3	1.2	182	771.8	153.7	3437.8	98.9	nd
ABS	97	POD		124	1320	10.2	29	75	118.5	62.1	331.2	94.7	nd
ABS	98	POD	1	124 124	1430	5.9	30.4	73.9	212	83.5	211.4	127.3	nd nd
ABS ABS	99 100	POD		124	1540 1650	8.2 12.4	28.1	47.5 54.9	56 53.5	63.1 72.8	91.8 136.2	317.2 314.7	nd nd
ABS	100	POD		125	0	12.4	26.7	59.4	115.1	69.6	277.6	179.1	nd
ABS	102	POD		125	120	20.9	18.9	59.5	276.9	82.1	532.3	92.8	nd
ABS	103	POD	1	125	220	22	23	57.9	177.6	89.4	314.8	154.7	nd
ABS	104	POD		125	330	26.9	28	57.4	57.8	66.8	134.5	204.5	nd
ABS	105	POD		125	438	21	28.4	53.3	73.8	77.1	199.7	92.4	nd
ABS	106	POD		125	579	9.8	23.9	55.5	97.9	59.9	188.4	76.6	nd
SP	107	POD	1	125	610	6.6	26.6	41.6	39.6	55.1	99.7	30.5	nd
ABS	108	POD		125	634	11.9	21.3	27.6	15	42.9	109.2	432.9	nd
ABS ABS	111	POD POD		125	858 990	14.9	24.9 22.6	53.3 18	73.2	48.1	106.7 151.1	139.5	nd
ABS	112	POD	+	125 125	1100	1.2	19	24	111.4	44.7	125.9	63.6 87	nd nd
ABS	114	POD	+	125	1232	19.8	20.4	48.3	150.1	69.1	250.5	67.2	nd
ABS	115	POD		125	1387	10.2	20.4	47.9	43.4	51.3	80.4	44.2	nd
ABS	116	POD		125	1397	11.9	27.1	32.8	42.7	66.3	120.7	199.1	nd
ABS	117	POD		125	1540	2.4	22.9	28	133.2	52.1	430.7	48.1	nd
ABS	118	POD		125	1722	12.8	1.2	236.4	1417.6	180.5	3984.4	142.1	nd
SP	119	POD		125	1732	25.6	15.3	284.8	417.1	101.4	766.4	67.1	nd
	121	POD		126	57	1.6	22.4	76.8	190.4	60.3	432.7	40	nd
SP			1	126	67	54.4	1.2	380.7	1357.3	165.2	3508.8	62.4	nd
SP ABS	122	POD			00:			170 0	LAGG				
SP ABS ABS	122 123	POD		126	221	8.6	24.3	28.8	46.6	58	173.9	225.6	nd
SP ABS ABS ABS	122 123 124	POD POD		126 126	330	8.6	18.4	87.4	17.4	33.9	96.3	70.4	nd
SP ABS ABS ABS ABS	122 123 124 125	POD POD POD		126 126 126	330 440	8.6 6.9	18.4 26.1	87.4 50.8	17.4 270.9	33.9 98.4	96.3 1064.9	70.4 27.3	nd nd
SP ABS ABS ABS ABS ABS ABS	122 123 124 125 126	POD POD POD POD		126 126 126 126	330 440 550	8.6 6.9 5.4	18.4 26.1 21.3	87.4 50.8 54.6	17.4 270.9 256.6	33.9 98.4 63.5	96.3 1064.9 846.8	70.4 27.3 83.2	nd nd nd
SP ABS ABS ABS ABS	122 123 124 125	POD POD POD		126 126 126	330 440	8.6 6.9	18.4 26.1	87.4 50.8	17.4 270.9	33.9 98.4	96.3 1064.9	70.4 27.3	nd nd

Sample ID THLT	Sample No. THLT	ELR	ΠŢ	Mile	Yards	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Total Petroleum Hydrocarb ons	Asbestos (presence/a bsence)
C4SL/S4UL Open space (res)						79	7.71 ¹	12000	630	230	81000	3800 ²	
C4SL/S4UL Open space (not near residential)						170	220 ¹	44000	1300	3400	170000	7900 ²	
C4SL/S4UL comercial						640	33 ¹	68000	2330	980	730000	17000 ²	
ABS	1					1.2	1.2	145.7	1461.3	172.9	4953.3	10.0	nd
ABS	2					10.1	28.7	119.5	139.2	97.2	590.0	10.0	nd
ABS	3					1.2	1.2	145.8	1368.8	166.7	5032.0	19.0	nd
ABS	4					1.2	21.9	92.5	301.2	76.1	913.1	25.0	nd
ABS	5					16.6	1.2	269.4	1741.5	222.2	5516.7	10.0	nd
ABS	6					17.3	27.3	13.0	14.1	57.0	67.8	34.0	nd
ABS	7					1.2	12.1	80.3	501.5	122.4	3956.7	10.0	nd
ABS	8					1.2	1.2	233.6	1558.1	166.4	8416.1	10.0	nd
ABS	9					1.2	26.5	73.6	261.6	87.1	915.8	13.0	nd
ABS	10					18.1	30.3	47.3	63.6	91.3	201.4	12.0	nd
ABS	11					11.9	37.8	37.7	53.8	99.2	160.7	10.0	nd
ABS	12					1.2	1.2	186.7	1363.2	160.2	3642.8	60.0	nd
ABS	13					1.2	54.1	102.7	316.9	166.7	1049.8	55.0	nd
ABS	14					1.2	48.9	111.8	769.8	370.4	1597.5	68.0	nd
ABS	15					1.2	1.2	608.9	2066.3	383.4	5128.0	32.0	nd
ABS	16					1.2	1.2	315.2	1696.5	156.0	3348.2	25.0	nd
DP	17					1.2	16.5	31.1	290.2	88.7	919.8	90.0	nd
DP	18					7.4	19.1	45.7	219.8	89.3	887.7	15.0	nd
DP	19					5.8	17.7	13.6	37.7	58.3	129.1	16.0	nd
DP	20					8.9	22.2	18.9	40.0	57.7	118.2	14.0	nd
ABS	21					8.1	38.1	33.8	28.5	97.0	107.4	10.0	nd
ABS	22					10.0	49.8	58.4	30.9	142.1	106.1	98.0	nd
ABS	23					10.5	24.9	33.3	38.4	70.8	105.7	10.0	nd
ABS	24					16.8	41.0	43.8	62.3	86.4	181.1	10.0	nd

Table 1 - Comparison of Track Bed Chemical analysis against Human Health C4SL/S4UL

Target from Chromium VI has been applied as a worst case scenarion to total Chromium results The lowest target for the TPH bans has been applied to total TPH as a worst case scenario

Notes 1 2

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council
6.25, Environmental Statement, Volume 4, Appendix 10.2, Annex J Risk

Assessment Methodology

The Infrastructure Planning (Applications: Prescribed Forms and

Procedure) Regulations 2009, regulation 5(2)(a)

Planning Act 2008

Author: CH2M

Date: November 2019

Risk assessment is the process of collating known information on a hazard or set of hazards in order to estimate actual or potential risks to receptors. Receptors can be connected with the hazard under consideration via one or several exposure pathways (e.g. the pathway of direct contact). Risks are generally managed by isolating or removing the hazard, isolating the receptor, or by intercepting the exposure pathway. Without the three essential components of a source (hazard), pathway and receptor, there can be no risk. Thus, the mere presence of a hazard at a site does not mean that there will necessarily be attendant risks. The following risk assessment thus focuses on those parts of the site where hazards or potential hazards have been identified and is not general to the whole site.

Hazards

Potential sources of contamination are identified for the site, based on a review of the current and previous site uses. Not only the nature but also the likely extent of any contamination is considered, e.g. whether such contamination is likely to be localised or widespread.

Receptors

The varying effects of a hazard on individual receptors depends largely on the sensitivity of the target. Receptors include any people, animal or plant population, or natural or economic resources within the range of the source which are connected to the source by the transport pathway. Receptors can, in addition, extend to remediation processes and future construction materials that may be adversely affected by on-site contamination. In general, however, receptors can be divided into a number of groups depending on the final use of the site.

Pathways

The mere presence of contamination does not infer a risk. The exposure pathway determines the dose delivered to the receptor and the effective dose determines the extent of the adverse effect on the receptor. The pathway which transports the contaminants to the receptor or target generally involves conveyance via soil, water or air.

Exposure Assessment

By considering the source, pathway and receptor, an assessment is made for each contaminant on a receptor by receptor basis with reference to the significance and degree of the risk. In assessing this information, a measure is made of whether the source contamination can reach a receptor, determining whether it is of a major or minor significance. The exposure risks are assessed against the present site conditions.

A risk assessment has been undertaken for the site to identify the main potential land contamination constraints to development and potential contaminant linkages based upon a review of the site history, ground conditions and environmental setting. The method for risk evaluation has been based on CIRIA (2001) guidance 'Contaminated Land Risk Assessment - A Guide to Good Practice', which is a qualitative method of interpreting the risks based on the magnitudes of both the potential consequence (severity) and the probability (likelihood) of the risk occurring. Risk is based on a consideration of both:

The likelihood of an event (probability); [takes into account both the presence of the hazard and receptor and the integrity of the pathway].

The severity of the potential consequence [takes into account both the potential severity of the hazard and the sensitivity of the receptor].

In order to then determine the risk to the identified receptor, both the likelihood and severity of the potential hazard is input into a risk assessment matrix as follows:

Consequence

		Severe	Medium	Mild	Minor/ Negligible	
(poo	High Likelihood	Very high risk	High risk	Moderate risk	Moderate/Low risk	
robability (Likelihood)	Likely	High risk	Moderate risk	Moderate/Low risk	Low risk	
bility (I	Low Likelihood	Moderate risk	Moderate/Low risk	Low risk	Very low risk	
Probai	Unlikely	Moderate/Low risk	Low risk	Very low risk	Very low risk	

Under such a classification system the following categorisation of risk has been developed and the terminology adopted as follows:

Term	Description
Very high risk	Severe harm to a receptor may already be occurring OR a high likelihood that severe harm will arise to a receptor, unless immediate remedial action works / mitigation measures are undertaken.
High risk	Harm is likely to arise to a receptor, and is likely to be severe, unless appropriate remedial actions / mitigation measures are undertaken. Remedial works may be required in the short term, but likely to be required over the long term.
Moderate risk	Possible that harm could arise to a receptor but low likelihood that such harm would be severe. Harm is likely to be medium. Some remedial works may be required in the long term.
Moderate/ low risk	Possible that harm could arise to a receptor, but where a combination of likelihood and consequence results in a risk that is above low, but is not of sufficient concern to be classified as medium. It can be driven by cases where there is an acute risk which carries a severe consequence, but where the exposure is unlikely.
Low risk	Possible that harm could arise to a receptor. Such harm would at worse normally be mild.
Very low risk	Low likelihood that harm could arise to a receptor. Such harm unlikely to be any worse than mild.

The colour coding for each risk category is used in the risk assessment summary table. The classifications for consequences and likelihood of occurrence are as follows:

Classification	Definition					
Severe	Acute risks to human health					
	Short-term risk of pollution of sensitive water resource (e.g. major spillage into controlled waters)					
	Impact on controlled waters e.g. large-scale pollution or very high levels of contamination					
	Catastrophic damage to buildings or property 9e.g. explosion causing building collapse)					
	Ecological system effects – irreversible adverse changes to a protected location. Immediate risks.					
Medium	Chronic risks to human health					
	Pollution of sensitive water resources (e.g. leaching of contaminants into controlled waters)					
	Ecological system effects – substantial adverse changes to a protected location.					
	Significant damage to buildings, structures and services (e.g. damage rendering a building unsafe to occupy, such as foundation damage)					
Mild	Non-permanent health effects to human health					
	Pollution of non-sensitive water resources (e.g. pollution of non- classified groundwater)					
	Damage to buildings, structures and services (e.g. damage rendering a building unsafe to occupy, such as foundation damage)					
	Substantial damage to non-sensitive environments (unprotected ecosystems e.g. crops)					
Minor/ Negligible	Non-permanent health effects to human health (easily prevented by appropriate use of PPE)					
	Minor pollution to non-sensitive water resources					
	Minor damage to non-sensitive environments (unprotected ecosystems e.g. crops)					
	Easily repairable effects of damage to buildings, structures, services or the environment (e.g. discoloration of concrete, loss of plants in a landscaping scene).					

Classification	Definition
High Likelihood	An event is very likely to occur in the short term, and is almost inevitable over the long term OR there is evidence at the receptor of harm or pollution
Likely	It is probably that an event will occur. It is not inevitable, but possible in the short term and likely over the long term
Low Likelihood	Circumstances are possible under which an event could occur. It is by no means certain that even over a longer period such an event would take place, and less likely in the short term
Unlikely	It is improbable that an event would occur even in the very long term

At each stage of the investigation or development of a site, the source-pathwayreceptor model should be critically examined to determine whether the assumptions made in its creation are still valid or require modification to reflect the greater degree of understanding of the ground conditions.